Lagrange equations of the hydrodynamics of the
anisotropic superfluid liquid He3-A
L. M. Khalatnikov and V. V. Lebedev

L. D. Landau Institute of Theoretical Physics, USSR Academy of Sciences
(Submitted March 15, 1977)
Pis’ma Zh. Eksp. Teor. Fiz. 25, No. 8, 377-380 (20 April 1977)

The Lagrangian formalism is used to derive equations that describe the
hydrodynamics of He’-A4. The form of the conservation laws is obtained. The
dissipative terms in the hydrodynamic equations are considered.

PACS numbers: 67.50.Fi

A Lagrangian formalism for the description of the hydrodynamics of He-II
was developed in!!l, This method can be generalized to include the case of the
anisotropic superfluid liquid He®~A. Compared with He-II, this phase has addi-
tionally an order parameter $ =@, +i®, (we disregard the spin variables), and
the energy ¢ acquires a dependence on 1 and on Vil (1 is the angular momentum
of the pair). We add to the Lagrangian of!!! a term that describes the transport
&, (in which case ®, appears automatically as a Lagrangian multiplier), as well
as the structural condition on the reference frame ®;, ®,, 1. As a result we get

L=%pv = iv, + %o, s, v, = v lo yi0) ~a B+ Vi) - BE +V(sv,))

he - d - - -
-y(f +v(fv)) - <I>2d— o, -g(l -[2,, 2,1), (1)
7

where d/dT=7/2ml p(8/6t) +]VI], f, v are the Clebsch variables, €=¢ — plv,—v,),
p=0¢/ dv, is the normal momentum density. D The Lagrangian (1) leads to the
system of equations

p+ V=0 $+ylsv,)=0 f+ AUV =0, 2)
- K
1 =[31x 2] Ve =Va- Win VAT @)
0 Y o2 " 0.4
B+v, VB +T=10 Y+ V,Vy = a+ %ol +;¢—E—(D2®1=0, 4)
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p=sVB+ny j=p+pvs, (5)

d de de
I JORE 3 T ®
dr 6ll a(Vkl;)

We note that the term Va in expression (3) for the superfluid velocity can
always be eliminated by a gauge transformation of the order parameter .
From (6) it follows that d(®,, - ®,)/d7=0, i.e., the relations &,®,= 0,4 can be
regarded as boundary conditions for the given system of equations. Taking
these relations into account, we can obtain from (3) an expression for the curl
of the superfluid velocity

ViVsi = Vv =Ll[Vilejl]. (7)
2m
It follows directly from (3) and (6) that
dl/dr =[gxl1]. (8)
For the superfluid velocity we can obtain
(::“ =—Vi(;1+l/zv§)+ ;;i[vilxll. 9)

The obtained system of equation leads to an energy conservation law

= Ypvl + pv, +e:

E+vQ-=0,
de

Q=7 (p+22/2)+ sv, T+ (v v -1 (10)
n i I (VL)

We note that the invariance of E to rotations leads to the identity

Q. d 9
[lx__e_.] + |Vl x J¢ }4» Vklx £ +[px(vn—vs)]= 0. (11)
D v, dy 1

From the Lagrangian (1) can obtain in standard fashion the stress tensor,
which we shall use to formulate the momentum conservation law

dj.

___]_' F VR = 0,

at g (12)
12

de

ma= Sy P+ vl + JkVsi * kP,

6Vkl

where P=Ts+up+p(v,—V,) — ¢ is the pressure. We note that the tensor r has
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an antisymmetrical part that can be reduced with the aid of the identity (11) to
the form

£ 0
nikTik = VB, + — — (1), 13)

The angular momentum conservation law takes thus the form

d
_([rxj]+ipl) oy, (ex 71+ B,). (14)
ot

m

We proceed now to consider the dissipative terms. By virtue of the condition
=1 the generalization of Eq. (8) is effected by the substitution g— g+ (ip/2mY),
and the generalization of (9) is realized, by virtue of the condition (7), by put-
ting p—p+h. We add to 7, the dissipative part 7,,+16;, (1;;=0), we rewrite the
equation for the entropy growth in the form 7'(s +V(sv,+q/T))=R, and obtain
by using the standard procedure'?! E+V(Q+Q)=0, where

Q =i, h+Av, +v 7. +q-

nt i

fuxlil, , (15)

(Vi)
q
R:-hvjo—)\an—_TVT—u[lxg]—rikwik, (16)

and we have introduced §o=J = pv,, w;,=3(V;v,,+V@,;) = 56,,VV,. In the approxi-
mation linear in the spatial derivatives we obtain

== Cleo -é‘zvvn_43(lwl)’

A==, Vi, —¢, Vv, =5 (1 wl),

ﬂ,-ﬁ

==k (VT =1(1VT))-w,[IxvT] -k, 1A VT),
k)]

us—fl(wl)-fz[lx(wl)]-.fsg-f4[lx-g],
Tig =~ M Vjc li lk b anli lk k) (]wl) li lk = 774eimnlm Wnk
_”Slk(WZ)i ’li (1 wl))- 776lk[ly(u)l)]i ‘717(5,' ‘l,; (lg))
- 773lk[l’g]i _779(wik—li (wl), =1, (wl), +lilk(l wl) ).
Here £,¢,x,t,n are the kinetic coefficients, and 7, is obtained from Tr'ik by

symmetrization and separation of the trace. The Onsager-symmetry require-
ments leads to the necessary symmetry of the matrices
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’ Cl CZ C3 ( 7)5 9 > ( 775 718)
d’] ¢2 ¢3 62 54 - fl {:4 (18)
Ty M2 Ty

By virtue of the positive~-definiteness, the quadratic forms constructed from the
matrices (18) should be positive-definite; in addition, we must have k; >0,
k3 >0, ng>0, while kg, 74, 7g, and £3 are arbitrary.

The obtained system of hydrodynamic equations agrees in the main with Ho’s
system, 1 but there are some difference, due to the absence of terms with
curl v,. In addition, in our equation 1 is transported with a velocity J/p, but this
quantity can be redefined by redesignating the kinetic coefficients.

It is seen from that by using the redefinition J’ =3+ (1/2)curlhpl/2m) we can
recast the conservation laws for the momentum and angular-momentum den~
sities in the usual form with a symmetrical stress tensor. Equation (8) still
retains its form if we use the change of notation

R
i=+i% g-og+hlprotv, + T[l,([vpxllv) ).
m

The authors thank Tin Lun Ho for a preprint of his article, as well as 1.
Dzyaloshinskii and G. Volovik for a discussion of the work.

DThe considered Lagrangian formalism can be reduced to a Hamiltonian
formalism by the standard procedure.
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