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It is shown that in a system of parametrically excited spin waves, stable
nonlinear solitary waves (solitons) can be excited under certain conditions.
Excitation of such solitons can lead to the appearance of spikes, which follow one
another at strictly equal time intervals, on the plot of the energy absorbed by the
system against the time.

PACS numbers: 75.30.Ds

Under conditions of parametric excitation of spin waves, a situation can
arise wherein the excitation threshold is minimal for one single pair of spin
waves, with a certain wave vector ky. In this case there are excited in the
medium packets that are narrow in k-space:

a (k) = A(k -k Jexp (- impt/Z) (1)
(wp is the frequency of the external high-frequency field of amplitude £).

The presence of a small parameter—the width of the packet—makes it possi~
ble to reduce the original dynamic equations for the classical amplitude a(k) of
the spin wave, by rewriting it in the language of the envelopes A(x)—the Fourier
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components of A(k). Reduced equations of this type were first written down by
L’vov and Rubenchik, 11 who investigated in detail different stationary spatially
inhomogeneous solutions of these equations for the case when the homogeneous
stationary solution is unstable, I turned out that only stationary spatially
inhomogeneous solutions of the equations of the equations are unstable, with a
growth rate larger than that of the homogeneous solution, so that the above-
threshold state of a system of parametrically excited spin waves is essentially
nonstationary. The spin-wave interaction parameters T and S of a number of
substances (e. g. ,®) are such that the crystal state corresponding to excita-
tion of a plane wave (homogeneous solutions) is stable. As will be shown be-
low, in this case there can be excited in the medium plane spin waves with
amplitudes that vary slowly in space (spatially inhomogeneous solutions). These
solutions are stable, and their presence leads to interesting physical con-
sequences, In particular, the unusual time dependence, observed in'!, of the
power absorbed by a magnet can be explained by considering such inhomo-
geneous states along the crystal,

Confining ourselves to one~dimensional motions, we write down the reduced

equation of motion for the complex envelope A(x) 1!

., 0 : * 2 3%4 2 2

;(£_+y)A-hVA =—L¥-2 +[cok°-mp/2+T[A[ +25] 41214 2
wp. i8 the frequency of a spin wave with wave vector k, determined by the
dispersion law, v is the phenomenological damping, L? is the constant of the
inhomogeneous exchange interaction, and V is the interaction between the spin
waves with wave vector kj and the alternating field, The inhomogeneous equa-
tions (2) have two trivial solutions in the form

A=za expli® ); y/hV=sin2<I>°; a, ={(l—yz/hzl/z)/ZS}l/2

2% =mp/2-Ta§. (3)

-]
If $S>0 and 2S+ T >0, then the homogeneous solution is stable with respect to
perturbations o ~ exp(vt +iKk - ),

Besides the homogeneous solution (3), Eq. (2) has also spatially inhomo-
geneous solutions of the type

A =a(x)exp (i(I)o). (4)
Stationary solutions from the class (4) can be periodic
afx)=c(l+c?)” 1/anizmo(25 + T)l/iL'l(l +c?)” ‘/2, ch (5)

where c is the integration constant, the second constant is chosen such as to
make a(0)=0, and sn(--+,c) is the elliptic sine with modulus ¢, The period of
these solutions is 7= (4L/ag (1+c) %25+ 7)1/ ?K(c), where K(c) is the com-
plete elliptic integral of the first kind,

If we choose the constant ¢ such that 8a/3x=0 at lal= layl, then we obtain
the essentially nonperiodic solution

a(x)=-a,thiz/1), 1= Lazl@s +T)"%. )

The solution (6) goes over asymptotically as lx| —= into the homogeneous solu~
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tion (3), and constitutes in fact a finite region of inhomogeneity in the system,
thus analogous in its structure to an interphase boundary.

We note that this new state satisfies the same energy-bound relation y/hV
=8in2®, as the homogeneous state (3), Consequently, in measurements of the
absorption of energy by the crystal we can register only the instant of excita-
tion of the spatially inhomogeneous state by observing the appearance, at a
certain instant of time, of a spike whose area corresponds to the energy of the
spatially inhomogeneous state

E=LS2%(25 + T a(l - y2/h2p?) "~ % (7

If the system under consideration has some weak inhomogeneity, then the
spatially inhomogeneous state of the crystal (6) turns out to be in an effective
external field determined by the degree and the character of the inhomogeneity.
The center of the transition layer begins to move along the crystal, and the
structure of the packet changes negligibly to the extent that the inhomogeneity
of the parameters of the system is small, In other words, we can seek a solu-
tion of Eq, (3) in the form

A=ax-x (t))exp (i O y+alt, x)h (8)
where x; is an integration constant, previously assumed equal to zero, but now
dependent on the time.

Agsuming for the sake of argument that the inhomogeneous parameter is the
amplitude of the external high-frequency field 2=h(1+ ¢(x)), we shall regard the
derivatives of ¢ and o with respect to time to be of the same order of small-
ness, After linearization, we obtain

Say
w @ = F, ( v=1, 2), (9
where
Py y* a2 x-x
Lii =&y, =-L2= -Tal+2(25 + Nal th(~——"°)- iy,
dx? 1

A A
(1 (1)* -
1 =L =25 + T)aZexp G 0, )} (Z"20) + 4y, (10)
!

X =-~Xx

3 %= %,
Fy = Fym=ife,/1)oh™( = o)exp(-mo);’z& -hVaoexp(i(Do)(é(x)tl( - )

A
Knowing the solution of the homogeneous equation & W4 @ =0, which is of the
form

a(o) = ch-2 x-%, exp(-i ®°)>
1 exp(i®, )

we easily obtain the equations of motion for the coordinates of center of the
inhomogeneity of the investigated states, which is simply the condition under
which the inhomogeneous equation (9) has a solution, with allowance for the
slow variation of ¢ :

(11)
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=, =_(3)ﬂﬁ (12)

Y ox

Thus, the presence of some inhomogeneities in the system causes moving
gpatially inhomogeneous states—solitons—to be excited in the crystal.

The possibility of excitation of such moving inhomogeneity regions leads to
the following physical picture. It is obvious that there should exist in the crys-
tal a point corresponding to the center of that spatially inhomogeneous state
which is most likely to be excited (this will most readily be simply the bound-
ary of the crystal). The instant of excitation of the soliton, as indicated above ,
will be marked by a spike on the plot of the absorbed power against the time.
The inhomogeneity region will then propagate along the crystal, and during that
time the level of the absorbed power will be the same as for the homogeneous
stationary state, After the lapse of a time £y=D(&/ 8)-! (D is the correspond-
ing dimension of the crystal), the inhomogeneity region will leave the sample
and at that instant of time, a new region of inhomogeneity will become excited
at the same point as the first region; the second region, in turn, will move
through the sample, We should thus obtain in experiment absorbed-power
spikes that follow one another at strictly equal time intervals, or the following
picture:

1L

)

t

which was observed in the experiments of Prozorova and Kotyuzhanskif, (3]

In conclusion the author thanks A, M, Kadigrobov for a dicussion of the
formulation of the problem, and also L, P. Pitaevskil, M,I. Kaganov, A.S,
Mikhailov, A.S. Borovik-Romanov, and L. A, Prozorova for a discussion of the
result of the work.

DYere and henceforth the stability problem is taken to mean the investigation
of the “internal”?! stability of different states of the system of parametrically
excited waves, in other words, stability with respect to perturbations of the
amplitudes and phases of the already exciting spin waves.
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