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Exact and explicit formulas are constructed for the S-matrix elements of soliton-
antisoliton scattering. These formulas agree with the perturbation theory of the
Thirring massive model and with the quasiclassical expressions.

PACS numbers: 11.10.Qr

It is known that the quantum sine-Gordon model, i.e., the model of the field
&(x) in (1+1)-dimensional space-time, described by the Lagrangian
1 m
L=—@ ®)?% + -2 cos (BD) 8))
2 K Bz n

has an infinite number of conservation laws. 2] This circumstance imposes
stringent constraints on the scattering properties of the particles in this
model. Namely, the set of particles constituting the final state of scattering
and the set of their momenta coincide with the set of particles and set of
momenta in the initial state, i.e., the particles can only exchange momenta in
the course of scattering, [3=61

The spectrum of the particles of model (1) consists of a soliton A, an
antisoliton A, and a certain number (which depends on the value of g% of
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soliton-antisoliton bound states C,. The masses of the latter are given by the
formulast®™;

m"=2msinny/16‘ n=l,2,..< 8"/y , (2)

where m is the mass of the soliton and y=g%[1 ~ g%/87]",

The matrix elements S for two-particle A +A4 scattering have two components,
Sy(s) and Sy(s) [s=(py+py?, py and p, are the momenta of the initial particles],
which describe respectively two channels of the A+ A4 reaction: forward scat-
tering (FS) and backward scattering (BS). S;(s) and S,(s) are analytic functions
of the gomplex variable s on a plane with two cuts along the real axis, s< 0 and
s=4me,

Since the amplitudes of the A+ A and A+ A scattering satisfy only two-parti-
cle unitarity conditions, the threshold points s=0 and s =4m? are root branch
points of second order of the functions Sy(s} and S,(s) (the branch point s =
has, generally speaking, a logarithmic character). Therefore, if we use the
variable

s~2m? +/s(s - 4m2)
6 =1In (3)
2m?
then the functions S;(8) and S,(8) become meromorphic functions of 6,

The transformation (3) maps the physical sheet of the s plane into a strip
0<Im0 <7, and the edges of the right-hand and left-hand cuts of the sheet are
mapped on the axes Im8 =0 and Im6 =7, respectively. Thus, the A+ A scatter-
ing (s channel) is described by the values of S;(6) and S4(6) on the semiaxis
Im#=0, Reb >0, while the scattering A+A4 (the « channel for FS) is described
by the values of S((6) on the semiaxis Im8=x, Ref <0, For BS, the » channel
coincides with the s channel, so that the crossing~symmetry relation for S,(6)
is

5,06) = 8,(in =6) . 4)

The unitarity conditions for the scatterings A+A and A+A can be represented
in the following analytic form:
5,(6)5,(=:6) + 85,(8)S,(-6) =1,

$1(6)8,(=6) + 5,(-6)S,(6) = 0, (5)

5,6)S,(2mi —6) =1.
Formula (2) means that on the segment 0 <Im6 <x of the imaginary axis of the
6 plane, at the points
6, =im—inYg; n=12m< 8"/y (6)
there are poles corresponding to the bound states C,. At y=8r/N, where
N=1,2,-.-, decay of the nth bound states place, i.e., the corresponding pole

leaves the strip 0 <Imé <7. Korepin and Faddeev(3! have proposed that at y
=87/N the exact expression for $;(0) is

g~
iNe N ¢ N
S(6)=e M —— (7
n=1 6 - an

e + e N
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FIG, 1, Pattern of singularities of S;(); the crosses designate zeros, and the
points poles. Some of the zeros and poles are shifted for the sake of clarity
from the imaginary axis. In reality all the singularities are at Re6=0.

This assumption is confirmed by the quasiclassical expression'®! for the
function S4(6), which vanishes at y=8n/N [if S5(6) =0, then formula (7) is a
consequence of (5) and (6)].

Assuming expression (7) to be exact, we shall attempt to reconstruct S;(6)
and S,(0) for arbitrary y. Since there are no resonances in the A+A4 channel m
formula (6) means that Sy has a series of poles 6,=ixr —iny/8, n=1,2,.-., to
w, At y=87/N, there are zeros of S,(6}in the band — 7 <Im6 <0 at points
-im/N,n=1,2,,,,,N—1 [see (8)]. Therefore, at arbitrary v, the function
5,(8) should have zeros at the points —in'y/8, n'=0,1,2,.+- to ©, with the first
zero (n’ =0) simple, and the remainder double, A similar analysis in the bands
~Ilr<Imf<(l-1)rx,l=1,2,..-, and the use of condition (5}, gives the picture
of the zeros and poles of S;(6) shown in Fig. 1. The corresponding analytic
expression is

;8
51(6) = = —sh (_yf.o) v, @®)
where
®  Re (6)Relir —:6)
(e I‘—— r{1: ( 9
(0) = ( ( +i==)T )1[11 Re(0)Re(im) ’ @
86
r 21_ 2Z\rf 21_. =
( + z ( + +i ”
Re( ) =
I‘<(2l AT i_sf_)r (1 NPT TLLAN ;8_0-)
y Y y Y
The conditions (5) are satisfied if
2
1
§,(0) = =— sm(B Jue,. (10)
”

This expression satisfies automatically the crossing symmetry (4),

As ¥ —0, the functions (8) and (10) go over into the known quasiclassical ex-
pressions for the soliton § matrix, £3:9]

According to!1?, the model (1) is equivalent to the Thirring massive model
(TMM), the solitons being the principal fermions of the TMM, As <y —8r,
formulas (8) and (10) can be expanded in powers of 2¢g/x=(81/y) ~1 (g is the
TMM coupling constant) and compared with the results of the TMM perturba-~
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tion theory. This comparison was carried out up to order g? and agreement
was obtained.

The author thanks V.M, Gryanik, M. 1. Polikarpov, Yu,A. Simonov, and
K. A. Ter-Martirosyan for useful discussions.
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