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A new type of localized two-parameter solutions of the one-dimensional dynamic
equations for the magnetization in a ferromagnet is obtained. The energy E of
the nonlinear wave is calculated as a function of its momentum P and of the
number of bound magnons in the wave. A formally periodic dependence of E on
P having the meaning of the dispersion law for a magnetic solition, is observed.

PACS numbers: 75.30.Ds, 75.30.Cr

In a quantum analysis of spin oscillations in a one-dimensional ferromagnetic
chain, Bethe!!! has observed and described the so-called spin complexes. Re-
cently, by macroscopic analysis of the dynamics of a one-dimensional ferro-
magnet, various localized solutions were obtained for the nonlinear equations
for the magnetization, ?=4! These solutions can be treated as bound states of a
large number of spin waves. It is of interest to establish the connection be-
tween the classical localized states and the spin complexes. However, the solu~
tions obtained in®=%), do not permit a direct comparison with the results of the
quantum calculation,

We have obtained a two-parameter localized solution of the nonlinear equa-
tions for the magnetization of a ferromagnet; this solution permits, after
quasiclassical quantization, a comparison with Bethe’s results. 1] We describe
this solution in this paper and discuss the feasibility, in principle, of experi-
mentally observing localized waves in a ferromagnet,

We shall consider a ferromagnet with an anisotropy of the easy-axis type
and describe its state with the aid of a magnetization vector M, Using the con-
dition M?=M§, which is natural for a ferromagnet, we write down the com-
ponents of M in the form

M, =M sinfcos ¢, My=M°sin05inqS, M,=M cosb,

where My=2pgs/a® (b, is the Bohr magneton, s is the spin of the atom, and a3
is the volume of the unit cell).

The dynamic equations for the vector M (the Landau-Lifshitz equations with~
out relaxation) can be regarded in terms of the angle variables § and ¢ as the
Euler equations corresponding to the following Lagrange functions'®’

h
L = M, (l-cos@)iﬁ -6, ¢},

2;1.0 at
where W is the density of the magnetic energy:
W= _;- M2 (90)2 + sin?6(y #)2} + % BM2 sin0.

486 0021-3640/77/2511-0486$00.60 © 1978 American Institute of Physics 486



Here o is the exchange constant, § is the anisotropy constant (8 > 0), and the z
axis is chosen along the easy axis.

We study a localized plane magnetization wave, in which the fields 6 and ¢
depend on a single spatial coordinate £ and on the time ¢ (one-dimensional
solution) :

0=0(&E=-Vt), b=y (E~-Vt)+ wt,

where V is the displacement velocity of the localized wave and w is the prece~
sion frequency in a reference frame moving with velocity V., It is required that
the function 6(£) vanish, and that the derivative dy/d¢ be bounded at infinity.

Before writing down the solution, we note that it is characterized by two
parameters, w and V, It is more convenient, however, to use other param-
eters, namely the integrals of motion N and P:

:-.-M?(]—cosﬁ)df, =—azf-ai —iL_._.df,
2#0 —00 -0 af 6(8¢/8t)

where N is the number of spin deviations (magnons) and P is the momentum
of the magnetization field,

The simplest forms of the functions 0(¢) and ¥(£) are determined by the

relations
N n P
sh?(—) + sin¥— d
tgz(i) ) (NI) (2P°) ’ By 1 .
2 d¢ 2 2(6/2
p aw_ cos ) (1)
chz(Kf)-sinz—ﬂ—) °
2,
Here 2a2Mo . 4s nfiazM‘J 2rsH
M = \/a//3=—a—\/a/I3, F o= = '

tw, =2Bp M, .
It follows from (1) that the solution for 6 is localized in the region At =1/k, and

nP
/ sin¥(5p

K(P, N)= gth(%v-l) 1+ —%I’-V)P—-)' . (2)
s (;1)

If we express k in terms of V and « and impose the obvious requirement that x?
be positive, then we obtain a condition for the existence of localized solutions

(1):
2
2 e BT
BK (V.w) 1 Zo a(?a_)_) >0 . (3)
At w=0, the solution (1) describes a solitary spin wave, %) which can move
only with velocity V <2wqVa/B. At V=0 and w >0, the solution (1) corresponds

to an immobile self-localized magnetization state. (%] Finally, at «? «p/o we
obtain

6 =6, sechlx (£~ V)], (4)
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B,V ¢l
0o=“‘/%1+’ﬁ) : (5)

The solution (4) coincides with the principal approximation of the asymptotic
expansion inf3) and describes a magnetic soliton whose velocity is actually
determined by the condition «(V,w) =0,

The magnetizatozon-field energy given by solution (1) is equal to
E(P,N) = o’ [ Wd & = 4a’M_x(P, N), (6)
where k(P,N) is determined by formula (2).

It turns out that
V = dE/9P, hw = dE/IN .
It is easy to verify that the energy of the localized wave per magnon satisfies
the condition

e(P, N) = E(P, N)/N < fa(k), P= Nk, )

where w(k) = wyll +(a/p)k?] gives the long-wave law of magnon dispersion. It
follows from (7) that the localized magnetization wave (1) corresponds to a
bound state of N magnons.

At =0 and s =1 we readily obtain from (5) the expression
E(P, Nj =(21/N)sin’(aP/28), (8)

where I has the meaning of an exchange integral expressed in terms of the
macroscopic parameters by the relation Ia2=4aquo. The energy (8) coincides
exactly with Bethe’s result, [

A curious feature of formulas (6) and (8) is the presence of a periodic depen-
dence of E on P, with a period 2P, The momentum of the waves is transformed
into a quasimomentum. It turns out that a one-dimensional ferromagnet
possesses, as it were, a certain structure that manifests itself when a spin
complex propagates in the magnet, This structure is characterized by a linear
dimension AX=py/ M, (My=a’M, is the nominal magnetic moment per unit
length of the magnet), which determines the maximum density of the number of
flip spins along the one-dimensional magnet,

It must be borne in mind that the noted periodicity is formal in a certain
sense, since the long-wave approximation in the description of the ferromagnet
turns out to be valid only at [P| <P;, At N>N,;, however, our formulas remain
valid all the way to small vicinities of the points P=1 Py,

The solitary magnetization waves can probably be observed by the same
procedure that we used in the study of nonlinear thermal pulses. 3 The possi-
bility of its realization in magnetic measurements has apparently been con-
firmed by experiments'®] on the observation of individual moving spin excita-
tions. If the amplitude of the nonlinear wave is not very high, then the wave
takes the form of a soliton (4), the characteristics of which are connected by
relation (5). The presence of internal precesion can be detected by using the
relation k(V,w) =0, from which it follows that the connection between w and
V is practically the same as the connection between the frequency and the
group velocity of single-magnon excitation.
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We are grateful to I. M, Lifshitz for useful discussions, The derivation and
detailed analysis of the reported results will be published in the journal
“Fizika Nizkikh Temperatur’’ (Low Temperature Physics).
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