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The growth of a He* crystal in a closed volume (by the blocked-growth method) is
studied. The density distribution of the solid phase along the axis of a long
cylindrical container originally filled with a liquid under pressure is derived.

The “blocked-capillary method” is widely used to produce solid helium. Al-
though it is assumed here that the resulting samples have a homogeneous density equal
to that of the original liquid,'™ the validity of this assumption is not obvious when
crystals are grown in narrow capillaries.

In this letter we study the growth of a He* crystal in a closed cylindrical container
filled beforehand with liquid He* at a pressure P, > 25 atm.

We lower the temperature of one end of the container to the solidification tem-
perature for the given value of P,. Crystallization of the helium begins at the cooled
end surface. Under the condition L» R, where L and R are the length and inside radius
of the container, we can assume that the interface between the solid and liquid phases
is plane and perpendicular to the axis of the container. We direct the z axis along this
axis; the positive z direction is the direction in which the boundary moves, and the
origin is put at the plane of the cooled end.

Since the density ( p,) of solid He* is higher than that ( p,) of the liquid at the same
pressure, the growth of the solid phase toward the liquid must be accompanied by an
acquisition of mass from the liquid phase, and the pressure of the liquid must decrease
continuously as the crystal grows. The density of the solid helium depends in turn on
the crystallization pressure, so that a crystal with a density p,(Z}, which is inhomo-
geneous along its length, grows in the closed volume.

Let us find the density profile p,(Z ) under the assumption that no redistribution
of the density in the solid phase occurs. We will not make the further assumption that
the difference A p = p, — p; varies along the melting curve, since this change does not
exceed 4% between 30 and 120 atm (Ref. 5).

We assume that a layer of solid phase of infinitesimal thickness dz has grown on a
crystal of length Z, < L. Mass conservation leads to the differential equation dp;,(z,)/
dz, = — A p/(L — z,). Denoting by p;(0) the initial density of the liquid, we find

p, (1) =p, (0) +Bpln (1 - 2,/L), (1)

The initial density of the crystal is p,(0) = p,(0) + A p, so that under the assumptions
above the density distribution in the solid phase is

p, @=p, (0)+Apln(1-z/L), 0<z<z,. (2)

Andronikashvili ef al.> have measured the resonant frequency w of bending vibra-
tions of a cylindrical container (L = 30 mm, R = 0.15 mm), in which He* is solidified
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by the blocked-capillary method. The growth of the crystal at the fixed and cooled end
leads to a flow of mass of the liquid away from the vibrating free end; the effect is to
raise the resonant vibration frequency (the points in Fig. 1). '

Under the condition p; <p, €o/mR ? the relative shift of the square of the resonant
frequency is given by

L L
Aw? (zyf W =—(@R*[o) [ x* (2) p (2)dz/ [ x* (z)dz, (3)
0 0
where ¢ is the linear density of the unfilled container, the function x(z) describes the
shape of a uniform rod undergoing bending vibrations,® and we have p(z) = p,(z) at
0<z<z; and p(z) =p,(z,) at z; <z<L.

The position of the interface, z,(T"), can be related in an unambiguous way to the
temperature with the help of the known temperature dependence g, (T') along the melt-
ing curve’ and Eq. (2):

2 (T)/L =1-exp[( B, (T)= p, (0))/ AT]. (4)

The results of a numerical calculation of the frequency shift from Egs. (3) and (4)
are shown by the solid line in Fig. 1. The dashed line shows the calculated behavior of
the relative distance over which the crystal grows, z,(T’)/L. In the temperature interval
1.8<7<3.4 K (3.4 K is the crystallization temperature at an initial pressure of 95 atm)
we observe a satisfactory agreement between the calculated and measured frequency
shifts. The sharp decrease in the frequency observed at T'= 1.78 K results from the
nucleation of the ¥ phase, at which point a three-phase system appears in the contain-
er. The further growth of the He* crystal thus cannot be analyzed by the model used
here.

If we ignore the appearance of the ¥ phase, however, we find from Eq. (1) that at a
certain z, the density of the liquid reaches a value corresponding to a pressure of 25
atm, and the crystal growth comes to a halt. Although the growth of the y phase
causes a significant redistribution of mass, this redistribution does not cause a com-
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FIG. 1. Temperature depen-
dence of the resonant fre-
quency of a helium-filled
capillary. Py=95 atm.
Points—Experimental data;
solid line—calculations from
Eqgs. (3) and (4); dashed
line—relative distance over
which the crystal grows ac-
cording to calculations from

Eq. (4).
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plete equalization of the density, as can be seen from the experimental data in Fig. 1.
Accordingly, the helium may not fill the entire length of the container in crystalliza-
tion by the blocked-capillary method.

If the density became completely uniform over the entire length of the container,
the vibration frequency of the container would have to return to its original value
(under the condition that the mass of helium inside the container is constant) or even
drop below this original value (if additional mass is forced out of the filling line). Since
we do not observe this effect, we conclude that the redistribution of density in the
crystals grown in a blocked container with the specified dimensions is insignificant
over a time on the order of several hours.

The shear stresses in the crystal corresponding to the calculated density gradient
reach (1-5)x 10° dyn/cm?. This value is an order of magnitude higher than the values
at which plastic flow of solid He* has been observed in experiments with bulk sam-
ples.”

In summary, the model proposed here gives a qualitatively correct description of
the growth of a He* crystal in a closed volume with the specified values of L and R.
We believe that questions related to the microstructure of the crystals of variable
density, the reasons for the anomalous strength of these crystals, and the mechanism
for the growth of the ¢ phase require a special study.
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