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A system of equations which describes the relaxation of dynamic solitons is
proposed. The relaxation time of slow, low-amplitude solitons is calculated. Upon
relaxation, the solitons undergo a self-acceleration and their magnetization
precession frequency increases.

1. The nonlinear one-dimensional waves in ferromagnets have recently attracted
considerable attention.' Two of the simplest solutions of the Landau-Lifshitz equation
are the kink solitons (or the domain walls) and the dynamic solitons. The stopping of
domain walls has been described phenomenologically in terms of the dissipation, using
the relaxation term in the Landau-Lifshitz equation and also by analyzing the scatter-
ing of spin waves by domain walls.> Although the relaxation of dynamic solitons has
virtually not been studied, the dissipation-free dynamics of these solitons is known
quite well.

In this letter we consider several methods that can be used to calculate the damp-
ing of a dynamic soliton. For simplicity, we will consider a slow, one-dimensional,
low-amplitude soliton in a ferromagnet. We will show that dissipative processes in-
crease the velocity of a soliton and the frequency at which its magnetization precesses.
As a result, the soliton “moves” in the @, v* plane toward the interface between the
region of dynamic solitons (see Fig. 1) and the spin waves and then breaks up into spin
waves.

2. We work from the expression for the internal energy of a ferromagnet
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2 FIG. 1. 1—The region in which a dynamic soliton can be found; 2—the

region in which there are spin waves. The energy of a soliton vanishes
4
l— 1

on the liney+z=1.
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and the Landau-Lifshitz equation

M=7[M,H, | +\a*yMoAH, + (N Mo ) [ M, M] . 2)

In these equations « and S are the exchange constants of the magnetic anisotropy, ¥ is
the gyromagnetic ratio, A, and A are the exchange® and relativistic® relaxation con-
stants, @ is the lattice constant, and H(x,z) = §W /6M(x,t) is the effective magnetic
field. The relaxation terms in Eq. (2) correspond to the dissipative function

Q'=__;_ W=(\Mo/dy) [ [6% +¢? sin? 0 |dx + (N, a*Mo/ 4Y)

X f[(éi* @; ¢ sin 6 cos 6)* +(;oisin0 cosf +6 )* + (8,0 + qr.Jl.sinﬁcosG)2

+( 208,90 - ¢Fsin? 0 Ycos 20 ]d®x =0, +0, (3)

where 0 and @ are the polar and azimuthal angles of the vector M.

A dynamic soliton is characterized by the magnetization-precession frequency o
and by the center-of-mass velocity v. Instead of using these quantities, we can describe
the soliton, as shown in Ref. 1, in terms of the number of spin deflections, &, occurring
in it and in terms of the energy W. The number of spin deflections, A, is given by

wy N - _ 3 =mo—m (4)
Eo f(l cosG)dx To_y

where w, = 78M,, E, is the surface energy of the Bloch domain wall, E, = 2Jaf M2,
M= MV, #, is the component of the total angular momentum of the solid directed
along the z axis, and V is the volume of the solid. For a dynamic soliton, the quantities
N and W are'

N =(Es/ wo )arsh(E[E;R ),
(5)
W=2Ey, V1-2z —y,
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where y = w/wq,z = v*/vm*p,, = 2wpja/B = 2wyx,, and O? = 4z + )*.

In the absence of dissipation, E and N are the integrals of motion. Dissipation
gives rise to a slow change in £ and N over time. The relaxation can be described by
the equations

1 d

& wre-20w: N=N (6)
2 dt Q Nst’

where N,, is the change in N due to relaxation. The dissipative function Q has already
been determined. Before finding N,,, we should point out that N is proportional (with-
in a constant) to the relative deviation of .#, from the equilibrium value. The ex-
change relaxation therefore does not contribute to N,,, so that this value is determined
solely by the relativistic relaxation constant A. Using (2) and (4), we find

o e . 3 3 (7)
N, =AN(E/ wo) fosin* §d°x.
Equations (3) and (5)—(7) constitute the total system of equations which describes the
energy dissipation in a soliton, i.e., the change in @ and v over time.

3. Let us consider a low-amplitude soliton, for which W<E,,. The distribution of
magnetization in a soliton of this sort is given by’

sinf~ 0=(A/coshn); ¢=(y+2z)wet —z'"*(x/x0), (8)

where 4 = (W /E,)(1 + 2)='/2, and 7 = (W /2x,E,)(x — vt).

We assume, for simplicity, that the soliton is not only of low amplitude but also
slow, v<v,,. In this case, we easily see that Q, €Q, and that the relaxation of W and N
is described by a single parameter A. Using distribution (8) and Eq. (3) and (7), we can
easily calculate N, and Q as functions of y and z. Using Egs. (5), we can easily express
WW and N in terms of y and z. Finally, substituting these expressions into (6), we find
a system of two differential equations of the type

y=fi(nz); z=f(»z), (9)

whose solution yields y = y(¢) and z = z(¢).
For a slow, low-amplitude soliton we have Q=1 and Eqgs. (9) reduce to a single
equation

W=—2\wo W (10)

It follows, therefore, that

W= Woe_”“"ot, (11)

where W, is the initial energy of the soliton, and 7 = (1/2 Aw,) is its relaxation time.
Since the energy of the soliton decreases with increasing y and z (or, equivalently, with
increasing @ and v?), the energy dissipation of the soliton causes its velocity v and
precession frequency @ to increase.

I wish to thank B. A. Ivanov for valuable discussions.
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