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The acceleration of electrons captured by a plasma wave is studied. This
acceleration is caused by a multiple reflection of electrons from the wave front in a
transverse magnetic field. The conditions under which the energy of captured
electrons can be increased without restriction are determined. The inverse effect of
such an acceleration on the plasma wave is analyzed and the nonlinear damping
constant associated with the acceleration is calculated.

1. The idea underlying the acceleration mechanism which we study in this letter
and which was suggested by one of the present authors' is based on the use of a
magnetic field parallel to the wave front of an accelerating wave. The particles whose
velocities are nearly the same as the wave velocity have a small radius of gyration and,
as they are turned around by the magnetic field, they acquire the ability to be multiply
reflected from the wave front. As a result, the velocity of these particles along the wave
front , v,, increases after each reflection. This velocity has a limiting value because at
large values of v, the Lorentz force (e/cjv, H is greater than the reflecting force of the
electric field -— e(dp /0x) and the particle “surmounts” the potential hump, stopping
its interaction with the wave. This mechanism is responsible for the appearance of the
bunches of reflected ions at the leading edge of quasitransverse shock waves, e.g., at
the leading edge of a shock wave of the earth’s magnetosphere.? For the electrons
captured by a plasma-wave field, this acceleration mechanism is the main pathway of
the nonlinear damping of the plasma wave in a transverse magnetic field.? The device
for accelerating charged particles captured by a plasma wave, which was proposed by
Dawson* and which has been termed a serfotron, is essentially a relativistic modifica-
tion of the mechanism for the acceleration of captured particles and the concomitant
plasma-wave dissipation in the transverse magnetic field, which was studied by Sag-
deev and Shapiro.” Because of the relativistic restriction of the velocity v,, the Lorentz
force (e/cjv, H of a relativistic particle in a weak magnetic field is always smaller than
the electric force — e(dgp /dx), and the particle, being trapped in the potential well, can
increase its energy without restriction.

2. The system of equations which describes the interaction of an electron with a
traveling plasma wave E, = — d¢ /dx, ¢ = @,cos(kx — wt) in a transverse magnetic
field Hy|| Oz can be written
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Here and elsewhere in the text, the primes are used to denote quantities referring to
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the coordinate system of the wave. In this coordinate system, the presence of an
electric field parallel to the wave front, £ = — S,H ;, S, = w/kc, is taken into ac- :
count in Eq. (2). For a particle captured by the field of a small-amplitude wave, we
have v}, €w/k, and we can infer from Eq. (2) that the component of the momentum
directed along the wave front, p, increases approximately linearly over time.> Taking
the small ~v,,/c into account and transforming to a laboratory coordinate system, we
can write the following equation for v, (z ):

—_— [
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where w, = eH,/mc is the nonrelativistic cyclotron frequency. In addition to being
accelerated along the wave front, the particle executes phase oscillations relative to the
wave that captured it. To analyze these oscillations, we will use the energy integral of
the original equations [Egs. (1) and (2)]
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We assume that the following conditions hold:
ep' << mc?, w, T << 1. (5)

Here 7~ 1/k 'v is the period of the phase oscillations of the captured particle. From
(4), with the help of (3), we then find the following equations for the reversal points of
the captured particle, x’, , and where v, =0:

eHo

&+ep' (xy)= [vy'(r)(xi_,(r)—x'(f)))
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(6)
We can infer from this equation that the magnetic field increases the effective energy (
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of the phase oscillations when the particle moves toward the left reversal point x’_
and decreases the effective energy of the phase oscillations when the particle moves in
the opposite direction, i.e., toward the right reversal point x’, , moving the particle
trajectory to the left. Energy integral (4) and the condition under which the longitudi-
nal adiabatic invariant is conserved imply that the amplitude of the phase oscillations,
Ax’, of a relativistic particle does not change over time and that the frequency v’ /Ax’
decreases as 1/t. Accordingly, we can write in an approximate manner the law govern-
ing the temporal variation of the reversal points

X__:_, =i-x(') —E(t )’
where + x; are the reversal points in the absence of a magnetic field. These points are

related to the particle energy by & = — e {coskx,, and the equation for £ (¢), which
can be derived from (6) with the help of the second condition in (5), is

(7
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X [1-383 (1-83) (1483 %2 )" ]. (8)

In the nonrelativistic limit E,/H,<1, 5, <1, this equation is the same as that found in
Ref. 3.

For a particle with the initial reversal points kx, < 7/2 to remain in the potential
well in the limit #— 0, the condition

-E ink 1
0 » SN KXo > - (9)
Ho kxO \/ 1- Bd’

must be satisfied [as we can see from (6), in this case the condition k'€ < 77/2 always
holds]. At the time the particle with kx, > /2 leaves the well, we have £ = 7/k ' — x},
and the condition under which the particle is trapped is

E, sin? kxq 1
> 2"
Hy k xo \/1‘54,

Because of the approximate nature of the analytic solution, whose range of appli-
cability is limited” by conditions (5), we will integrate numerically the original system
of equations [Eqs. (1) and (2)]. The results of integration for different values of the
parameters E,/H,, k = (cosk /@, and B, are shown in Figs. 1-3. Figure 1 shows a
typical trajectory of the particle which is drawn into a process of unlimited accelera-
tion. The magnetic field displaces both reversal points of the trapped particle to the
left, and the particle remains in the potential well an arbitrarily long time, oscillating
at an approximately constant amplitude and frequency that attenuate over time. Such
an unbounded capture of particles by a wave can occur at reasonably large values of
the parameter Ey/H,,> [Eo/H,], . The dependence of [E,/H,],,, on kx, found by
means of a numerical simulation at « = 5 is shown in Fig. 2. In this figure the dashed
curve is the analytic dependence found from relations (9) and (10). The particles that

(10)
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have entered a region of indefinitely long capture form an accelerated bunch. The
energy of these particles increases with time in accordance with the equation

1/2
2,2 ,2
1+ p@hnl
1-67%,
An increase of this sort will eventually correspond to the first term in Eq. (3) for v, (¢).

The remaining terms give rise to a small spread of energies in the accelerated bunch,
whose relative amplitude AW /W ~uv. /c eventually decreases as 1/,

W=mec (11)

The functional dependence W (¢ ) obtained numerically is nearly linear (see Fig. 3).
Figure 3 also shows the energy spectrum of a bunch of captured particles at w,¢
= 100. The phases of the accelerated particles vary within the range — 7/3 <k'x'7/6
and the energy spread of these particles, AW /W, is no greater than 4%. These results
show that the acceleration method considered by us is highly effective.

The mechanism responsible for the acceleration of electrons captured by a wave is
the principal cause of nonlinear damping of a plasma wave in a weak, transverse
magnetic field. If we disregard the escape of resonant particles from the potential well,
which, according to (9) and (10}, can be done when E/H,>1 the law governing the
damping of the plasma-wave amplitude, which is found from the condition for the
energy conservation in the wave-resonant particles system, will have an explosive na-
ture

FIG. 2. The plot of [Ey/H,),y,, versus kx,. The values of E,/H,
above the threshold value correspond to an unlimited accelera-
tion of electrons. The solid curve is the result of a numerical
simulation and the dashed curve is the analytical dependence
found from Egs. (9) and (10).
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Here O, = veE (0)k /m is the nonrelativistic bounce frequency, v, is the thermal ve-
locity, and
N v3 mr mc? 1 ]
7L=\/—— w——;exp I.——— e — lj
T T N T
is the Landau damping constant for a plasma wave with 5, ~ 1 (see Ref. 5). In deriving

this equation, we assumed, for simplicity, that 5,®,,<1. From (11) we find that if the
condition

5230/2 711/2 >> wnkvth(l__ 32)1/4

is satisfied, the damping time of the wave will be 1<y '; i.e., the damping time of the
wave will be even shorter than the linear damping in the absence of a magnetic field.

UThe parameter E,/H, = (e@ '/mc®)(k’c/w,), which characterizes the possibility of capturing the particles
as they are accelerated in an unrestricted manner, may be rather large if conditions (5) hold.
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