Interface dynamics in first-order phase transitions
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The dynamics of the interface which arises in a first-order spin-flip phase transition
in an antiferromagnet is analyzed. The limiting velocity of the interface is found as
a function of the external agents acting on the system.

In most studies of nonlinear phenomena in the kinetics of first-order phase transi-
tions of the order-disorder type, the thermodynamic potential of the system has been
expanded in powers of the order parameter and its derivatives {e.g., Ref. 1). The
evolution of the order parameter is described by the Landau-Khalatnikov equation,’
which has a kink solution corresponding to an interface in uniform motion. This
approach is justified only if the order parameter and its gradients are small, i.e., only if
the first-order phase transition that occurs is approximately a second-order transition.

In this letter we examine the nonlinear dynamics of an interface which arises in a
thermally induced spin flip in an antiferromagnet. For definiteness, we assume that the
magnetic phases participating in the first-order spin-flip phase transition differ by an
angle of 7/2 in the orientation of the antiferromagnetic vector 1. Obviously, the ap-
proach outlined above cannot be used in this case, and we instead use the Landau-
Lifshitz dynamic equations for the magnetization to describe the motion of the inter-
face.

There are two important points to be noted. First, there is generally an abrupt
change in the entropy of the system at a first-order phase transition. For this reason,
the heat-balance equation in the system must be solved along with the evolution equa-
tion for the order parameter. In the case under consideration, however, of a spin-flip
phase transition, the jump in the entropy is small, to the extent that the relativistic
interactions are weak in comparison with the exchange interactions,” and this jump
can be ignored. Second, during first-order phase transitions, which are approximately
of second order, it is necessary to take into account the random force caused by
fluctuations in the system in the evolution equation for the order parameter.’ In a first-
order spin-flip phase transition, the interval over which the different magnetic phases
coexist is quite large (several degrees or even tens of degrees); i.e., there is a broad
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temperature interval in which the Ginzburg-Levanyuk condition holds, and in which
fluctuations can be ignored.

We will accordingly describe the motion of the interface by the Landau-Lifshitz
equations, taking the relaxation term into account in the Hilbert form. As was shown
in Refs. 4 and 5, in a two-sublattice antiferromagnet these equations reduce to a single
effective equation of motion for the angle (6 ) made by the antiferromagnetic vector 1
with a selected axis in the crystal:

3?0 1 0%¢ a¢

—_ —Asinf cos® — B sin 20 cos 20 =X —— . 1
pEr c? at2) o1 M

Here ¢ = (1/2) gM,{28)"/? is the minimum phase velocity of the spin waves, M, is the
saturation magnetization of the sublattice of the antiferromagnet, g is the gyromagne-
tic ratio, @ and § are the constants of the inhomogeneous and homogeneous exchange
interactions, respectively, 4 and B are combinations of phenomenological constants of
the antiferromagnet, which are generally functions of the temperature and the external
fields, A is the Hilbert damping parameter; and & is the coordinate along which the
magnetic inhomogeneity exists (the interface is assumed planar).

Steady-state homogeneous solutions of Eq. (1) with B > 0 correspond to equilibri-
um magnetic states® ¢,(@ = 0) and ¢,(6 = 7/2).? The regions of stability of the ¢, and
&, phases (4> — 2B and A<2B, respectively) overlap, and at the point (or on the line)
defined by the condition 4 = 0 the first-order spin-flip phase transition ¢, == ¢, oc-
curs.

With 4 >0 in (1), with the boundary conditions 6 (£~ + «) =0 or 7 and (38 /
9§ (é— + «) =0, which correspond to the phase ¢, we have the steady-state solution

A +2B
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which describes 2 180° domain wall in the ¢, phase. In the region in which the &,
phase is metastable { — 2B<A4<0), Eq. (1), with the same boundary conditions, has a
soliton steady-state solution,’ which is unstable.

Analogous solutions hold for the ¢, phase, in which we have 0 ({— + )= + 7/
2,(00/3) (é— + »)=0.

Finally, at 4 =0, i.e., at the point of the first-order phase transition, the steady-
state solution of the equation describes a 90° domain wall (an interface between the ¢,
and ¢, phases):

tane:exP(—E/so), Eﬂz\/a/zB H (3)
where £, is the effective thickness of the interface. We wish to emphasize that an
interface at rest exists only at the point of phase equilibrium (4 = 0).

Upon a deviation of the external parameters, an existing interface begins to move
away from this point in such a way that the thermodynamically favored phase in-
creases in size. This situation occurs, for example, in the growth of nucleating regions
in a first-order phase transition (treating the interface as one-dimensional is legitimate
if the radius of curvature, R, of the transition layer is sufficiently large: R>&,) and
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upon a deviation from phase equilibrium in a two-phase system, which is of the nature
of a thermodynamically stable, stripe, transitional domain structure (an intermediate

state).”®

A solution of Eq. (1) corresponding to a 90° interface in uniform motion (a plane
phase-transition front) is

E—-vt
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The velocity (v) of this interface is determined by the balance between the “pressure
force,” i.e., a measure of the deviation of the system from the phase-equilibrium point,
and the “friction force” 4190 /dt:
uidl
V= s M= E 0 / K . (5)
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In contrast with the problem under consideration here, the velocity of the interface in
an ordering phase transition is determined by the rate of heat transfer in the system.

It follows from (5) that the velocity of the interface (like that of a 180° domain
wall*®) does not exceed the minimum phase velocity of the spin waves, ¢. The highest
possible velocity of the interface, v,,, obviously is reached near the boundaries of the
region of metastability, i.e., as |4 |—~2B. Substituting the characteristic values of the
parameters for antiferromagnets of the rare-earth orthoferrite type (§~10% ¢~10°
cm/s, AgMy~107%, and B~ 1071 for estimates, we find that v,, can formally reach
values close to the limiting velocity ¢. Accordingly, in addition to the need to consider
the fluctuations in the case |4 |—»2B, mentioned earlier, we have yet another restric-
tion, which arises because the macroscopic description of the interface cannot be used

in the limit v—c [here the effective thickness of the interface, £,/1 — (v/c)?, becomes
comparable to the lattice constant].

(4)

YIn a first-order phase transition of the magnetic-ordering type, the jump in the entropy is of exchange
origin and cannot be ignored.

PThe interfaces between phases with different equilibrium angles can be treated in a similar way. The
motion of a 90° interface in a spin-flip phase transition was studied in Ref. 6.
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