Phase shift of a partially coherent electron wave as it
passes through a crystal

P. M. Eremeev and D. |. Piskunov
Institute of Electronic Technology, Moscow

{Submitted 20 June 1985)
Pis’ma Zh. Eksp. Teor. Fiz. 42, No. 2, 77-79 (25 July 1985)

The phase shift of the mutual coherence function of a partially coherent electron
wave transmitted through an ideal absorbing crystal depends on the distance
between the points at the exit surface of the crystal.

Partially coherent wave fields are usually described by means of a mutual coher-
ence function, defined as the time average of the correlation between the wave func-
tions at two points,’ x, and x,:

D(xy;x )={W (x;8)¥* (x558)) (1)
The mutual coherence function can also be written in the normalized form
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with 0<|7,,|<1. If x,%#x,, we have |y,,| =0 for a completely incoherent field or
|¥12] = 1 for a completely coherent field. Here 7 (x) = I'{x;x) is the field intensity at the

point x.

The quantity /3, is the phase shift between the points x, and x,.

The change in the mutual coherence function as an electron wave propagates
through a crystal can be described by an integral equation with the help of Green’s
functions®:
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where z is the thickness of the crystal, y, and p, are points on the entrance surface of
the crystal, x; and x, are points on the exit surface, and 4 = O for the transmitted beam
and s = g for the diffracted beam.

Using the Takagi approximation for the case of symmetric reflection, we can
write explicit expressions for the Green’s function for the transmitted and diffracted
beams®:
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where 8(z) is the Dirac §-function, Ji(z) and J,(z) are the Bessel functions of index zero
and one, S(z) is the unit step function [S(z)=0 at z<0 and S(zj=1 at z>0],
x'=xcot 0, 0 is the Bragg angle, and &, is the extinction length.

If the electron source is at a distance R from the entrance surface of the crystal
and is completely incoherent, the mutual coherence function at the entrance surface is
the Fourier transform of the source intensity function.! Assuming that the source
intensity function is Gaussian,* we have
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where [, = RA /2ma is the size of the region of coherent illumination at the crystal
surface, a is the transverse dimension of the source, and A is the electron wavelength.
If the source is far away, i.e., if RA>y;,, and if it has finite angular dimensions a/R,
we have a partially coherent illumination at the surface of the crystal, with a value

B12=0 for points y,, </RA .

In calculations of the mutual coherence function for a beam transmitted through
a crystal with a thickness z<0.5£,, we found that when the illumination is partially
coherent, there is a phase shift of the mutual coherence function at the exit surface of
the crystal, depending on the distance between the points on the exit surface (Fig. 1).
Inelastic scattering can be determined through the replacement® 1/£,—1/€, + i/€ .
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FIG. 1. Phase shift of the mutual coherence function versus the
distance between points on the exit surface. £,/&; =0.03,
z2=0495,. 1, =00001f,; 2—I, =000035,; 3—
I, =0.001&,.
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1
P) | FIG. 2. Formation of the phase shift between points on the
Z exit surface.

z,

The phase shift B, of the mutual coherence function is formed because of a
correlation between the random wave functions at the points x; and x,. The wave
functions at the points x, and x, receive contributions from beams which arrive from
regions of the entrance surface bounded by Takagi triangles (Fig. 2).

If the incident wave has a low spatial coherence, the correlation of the wave
functions at the points x, and x, is determined primarily by beams which arrive from
regions on the entrance surface with dimensions on the order of /.. If a beam arrives at
the point x, from this region as a transmitted beam, it arrives at x, as a doubly
diffracted beam and therefore has a phase shift of 180°. Accordingly, if the region of
coherent illumination is sufficiently small, /, 2tan & - z, and if the distance between
the points on the exit surface is 2 tan 6 - z, the phase shift of the mutual coherence
function is approximately 180°. At x, = x,, this phase shift is zero by definition.
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