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The Knight-shift distribution is calculated for a 1D system in the Anderson
insulator state. As a result of cooling, the distribution broadens and becomes
asymmetric. The NMR line has a similar shape at low temperatures.

1. The spatial distribution of electron spin density in disordered systems can be
determined directly by measuring the Knight shift. We have calculated the distribu-
tion of the Knight shift, K, in systems with an Anderson localization of electrons. The
distribution function X' depends on a single parameter p = 4TV, N (E), where ¥, is the
localization volume, 7T is the temperature, and N (Er) is the average density of the
electronic states at the Fermi level. With decreasing p, the distribution K becomes
asymmetric and broadens. At sufficiently low temperatures, the Knight-shift distribu-
tion begins to affect the NMR lineshape, from which the electron localization radius
can be determined directly.

We analyze below a 1D system of electrons, keeping in mind the interpretation of
the experimental studies of the NMR in a quasi-1D conductor with a pronounced
disorder, Qn(TCNQ),.

2. The Knight shift is proportional to the spin density of electrons at the nucleus,
o(r). Disregarding the electron interaction, we find
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where f (€) is the Fermi electron-distribution function, and u H is the Zeeman ener-
gy. The index v specifies the localized states with energies €, and wave functions
¢, (r) with the localization center at the point r, ; the wave functions decrease expon-
entially with increasing |r —r, |. In the 1D case, we will approximate |@, (r)|*> by
using the function (4R;) 'cosh=2[(r —r,)/2R,].
From Eq. (1) we then find

K = = =p ! %} cosh™%x cosh™? Yy 2

where K is average (with respect to the volume) Knight shift which is proportional to
N(Ep),and x, = [r—r,|/2R, and y, = |Er — €, |/2T. For px;>1 the distribution of k
depends on the function @, (r) near r = R;, and the description based on (2) has a
model nature. At px<1, the region >R, determines the principal contribution to the
distribution of «, and the results which we obtain below for the systems are common to
all systems.

The distribution of x depends on the distribution of random quantities x, and y,
in the x, y plane; the average density of the points v is equal to p (we assume Ez>T). It
follows from the calculations in Ref. 2 that x, and y, are distributed uniformly and
independently of each other at x, > 1. At shorter range, level repulsion accounts for
the fact that small values of y, occur more likely when the values of x, are small
{x, < 1). This effect is unimportant at pk<1, and we will assume below that the distri-
butions of x, and y, are independent of each other and uniform. We then find from
(2) the following expression for the distribution function

+ e d . oo @ .
W(K) = f_2% exp{ipKk + p{)dxgdy [exp (ipp~ ! cosh ™ xcosh™?y)—~1]}.
o (3)

At p>1 expression (3) yields a Gaussian distribution

Wik = ‘/55 exp[—— Zp(lc—»l){‘, p>1, (4)

To the extent it applies to the discussion above, asymptotic expression (4) can be used
to only estimate the distribution width of «.

For pr<1 the functions cosh™2x and cosh™?y can be replaced by exponential
functions, since large values of x and y are dominant in the integral, and (3) becomes
2
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The plots of the function W (k) vs In « are shown in Fig. 1. From (5) we find a Gaussian
distribution of the logarithm of « in the limit p — 0,

1 1 ,
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(6)
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With decreasing p, the peak of the function W (k) decreases to pk<1, and description (6)
for p<1 is an exact description for nearly all x, with the exception of the remote right
wing, where the function W k) is very small. With decreasing p, the true Knight-shift
distribution width, Ax, which is determined from half the maximum, first increases,
reaching a2 maximum width at p~1, and then falls off in proportion to
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as p — 0. In the case of small values of p, the NMR lineshape may therefore depend on
other broadening sources which are different from the nonuniform Knight shift. If the
contribution from these sources to the line width is 7, then the Knight shift is domi-
nant as Ax>7. In modern high-resolution NMR spectroscopy, the dipole-dipole
broadening has been eliminated and the ratio 7/K~0.02 is well within reach in
On(TCNQ), single-crystal samples.' In this case, the Knight shift determines the line-
shape at p>0.1.

3. In our discussion above, we have disregarded the electron repulsion. At low
temperatures, the electron repulsion gives rise to the appearance of states near the
Fermi surface which are occupied by a single electron. As a result, the paramagnetic
susceptibility y increases in accordance with a power law as 7—»0, and we must use
another approach to calculate the Knight shift (see Ref. 3). In Qn(TCNQ),, the
paramagnetic susceptibility y begins to increase below 20 K, and at 7>20 K y is
approximately constant and corresponds to the susceptibility of a degenerate electron
gas. At 295 K, the measurements carried out in Ref. 1 have shown that the Knight
shift plays a dominant role in forming the NMR line. This line is asymmetric, and its
width corresponds, according to (4) or (5), to p=5. From the data on y we find
N(Ep) = (mvr) " '=8.4X10° K~'-cm™, and R, can be as large as approximately
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15 intermolecular separations along the TCNQ stack. The reciprocal collision time is
77 '=2v./R, =150 K, consistent with the values estimated in Ref. 4. As a result of
cooling to 85 K, the line broadens and the peak shifts toward K = 0, consistent with
the calculations. In this case p decreases by a factor of approximately 4; i.e., the
localization length R, is nearly independent of temperature over the interval 8§5-295
K. In the polycrystalline samples studies in Ref. 1, the value of ¥ is determined primar-
ily by the anisotropy of the shift, and y/K ~0.4, irrespective of T. Since the Knight
shifts in samples of the sort is dominant at p R 1, only single-crystal samples can be
used to study it at smaller values of p (below 85 K).
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