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A supersymmetrical Liouville equation with anticommuting spinor fields is
integrated in explicit form and its general solutions, which are defined by four
arbitrary functions, are formulated. The “potentials” of the gauge field in the zero-
curvature representation in this case are functions that are important in the B (0,1)
[OSp(2,1)] superalgebra.

PACS numbers: 02.10.Nj, 01.30.Pj,

1. The methods of integrating nonlinear dynamic systems associated with gradu-
ated algebras, which were developed in previous papers,' allow generalization to the
supersymmetrical case. In this case the odd elements of the corresponding superalge-
bras can be compared with the anticommuting (spinor) fields that have importance in
Grassman superalgebra. In this paper we discuss in detail the supersymmetrical gener-
alization of the Liouville equation associated with B (0,1)[OSp(2,1)]-type superalgebra
and carefully examine the differences arising in the integration of supersymmetrical
equations, in contrast to the usual case.

2. The supersymmetrical Liouville equation corresponding to the action
fdz ,dz_d6.,d0_[—1®D D &P + exp®] has the form

A A n

D_D,® =expd. (1)

where ¢ = z, .0, )=plz, }— Bo(z e §§6F (z, ) is a superscalar field consist-
ing of two scalar fields p and F and the Majorana spinor @ * of the functions with
anticommuting values, which depends on the z, coordinates of a two-dimensional
space and Grassman variables 8 ==(6,,0_);0 =(— 6_,0..). The superdifferentiation
operators are D, = F3/%9, +6,3/0z ;D> = Fd/ oz,

D.D_=-D_D . Equation (1) in the of the superfield @ (F = expp} has the form

Pz, =-exp2p +exppw’o”; w’izr =-exppawt, (2)

and in the case @ * = 0 it becomes an ordinary Liouville equation identical to that
obtained earlier.’
3. The B (0,1) superalgebra {see, for example, Ref. 2) consists of five elements 4,
X, , Y. that satisfy the commutation relations
[h, X,1. =22X,, [h, Y] =xY,, [X,X 1. =Y, L 1, =4,

[X’i.y Yi’],- ='ﬂ: ! [Xiy )‘/;]4 =>Yi ) [Yt »
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Let us introduce the following operators A  that are important in the B (0,1} algebra,

A, =u*h+¢* X, +y* Y, ! (4)

where u*(z,,z_) and ¢ *(z,,z_) are the ordinary functions and YTz, ,z_) are the

anticommuting functions, (¢ *)?=¢*¢~ 4+ ¢y~ ¢* = 0. Thus, the “zero-curvature”
representation for the 4 , " operators

[9/9z, +4,, 3/dz_ +A_1=0, (5)

leads to the system

W, iU, +9TET w gty 2 BF, =i 2074

A ©
which, after the obvious replacement of the variables ¢ *¢ ~=exp2p and
¥ *=w * (¢ *)"/% reduces to Eqgs. (2).

4. The representation (5) is the condition for the gradient A, operators, i.¢.,
A, =gt gz, * (M

where g is an element of the complex shell of the supergroup® G with generators (3),
which can be represented in the form of a Gaussian expansion

g =M*'N expH =M~ N* expH”:, (8)

in which M * and N * are elements of the complex shells of the maximum nilpotent
subgroups of G that are stretched along X, and Y, , and H (H’) belong to the Cartan
subalgebra of G. Henceforth, for simplicity, we use the gauge H' =0 in which
u" =047,  =0.It follows from Egs. (4), (7), and (8) that the elements » * can be
represented in the form M * =expim*X, +€*Y_ ), where m*(z, ), m~(z_) and
€*{z,), € (z_) are, respectively, the ordinary and anticommuting functions of the
arguments (compare with Ref. 1). The identity (M *)~!M ~ = N ~expH (N *)~' from
Eq. (8) makes it possible to determine the group parameters of the elements
N f=exp(m*X, +€*Y,)and expH =exp(rh) in terms of the arbitrary functions
m * and € * that parametrize M *; specifically,

- ~ Ty -
exp(_r ) =-1 -:m+m —:€+€ 9 - E*'- --(Et' + mt 'E:F) expr,

mt =mbexpr . (9)
Substituting in Eq. (7), Eq. (8) with the elements M *, N *, and expH taken from Eq.
(9) and comparing it with Eq. (4), we obtain the following final equation for general

solutions of the supersymmetrical Liouville equation
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z

¢)i =(m:’tz i,fiei’z ) cxp{ (1"1,1)7],‘ u=-:(5 E: +,m+m—’z )CXPT,

l/l* =ATtt L aigt (e~ +etm™ ), A=1l-m*m,
r %y Zs

i/ =-e: , A=Al e) leain” , (e* +mh),
exp2p =»(m;'z+ +.eff: z+) ( m-’ - - € - Yexp2r ) (10)

5. The method used above to integrate the supersymmetrical Liouville equation
(1) can be generalized in the standard way for arbitrary graduated superalgebras. In
this case the basic problem is the formulation for the elements N * and expH from Eq.
{8) using the known M * that satisfy, as in the case of “ordinary” graduated algebras,
the S-matrix-type equations. To solve the nonlinear equations associated with graduat-
edalgebras characterized by the Cartan matrix (usually generalized),* we must know'
the expH element from Eq. (8), whose parameters can be determined by calculating the
matrix elements of the known operator (M )~ !M ~ between the highest and the lowest
basis vectors. However, a simple example of the supersymmetrical Liouville equation
shows that calculation of the highest vector of the element (M *)™'M ~ equal to
1 —m*™m~ — e*e is insufficient for describing the complete solution of Eq. (10) of
the system (1).

We note that the supersymmetrical generalizations of the sine-Gordon equations
(see, for example, Ref. 5), p,, , = 2expp — 2exp( —p) and p,, ,
= 2expp — exp{ — 2p), which have a nontrivial group of internal symmetries in ordi-
nary space,® are apparently associated with finite-size superalgebras with the Dynkin
schemes ( @ jand { G==3® ) and can be integrated just as in Ref. 7.
All of the questions require further study.

In conclusion, the authors thank B. A. Arbuzov, A. A. Kirillov, P. P. Kulish, Yu.
I. Manin, M. A. Mestvirishvili, and O. A. Khrustalev for useful discussions.

"The matrix realization of the Lax representation for (1) in Ref. 5 corresponds to the special B (0,1) represen-
tation within the context of our approach.
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