Self-focusing of waves on the surface of deep water
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Using a hyperbolic nonlinear Schridinger equation of the kind that is often used to
describe waves on the surface of deep water, we establish the existence of a new
region of instability for plane waves of small, but finite amplitude. The unstable
mode can propagate in a narrow solid angle about the normal to the direction of
propagation of the main wave,
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The envelope of a small-amplitude wave on the surface of deep water satisfies the
equation’
ad a® ERL )
e 4 e =2 ——— =D 4+ D[220 =0. 1
dt 9x? dy? e M
In this letter we examine the stability of a plane-wave envelope @ satisfying Eq.
(1). Assuming that @ is a real function of x, we obtain the first integral of Eq. (1)

1 | 1
E—‘bjx = B +,§_ @: - Z—‘b: » (2)

where B is a constant of integration. Assuming that the amplitude a is small, we write

® - l+acos (k x) + 0(a?),

This is consistent with
B ---;:- +a? +0(a*), k2 = 2+0(a?).

We shall show that allowance for the finite size of a leads to a new unstable mode that
does not appear in the linear approximation in a.

Examining the variation of @ about &, =1, B= — and setting ® =1 + 69,
50 = 50, el(xk + wr) + 5P, e (kx ~w*:e ),
we obtain the linear approximation to the dispersion relation:
2 2 2 2 2
W' ==2(ky =2k )+ (K =2 kf). (3)

We restrict discussion to the case of wave numbers k<1, for which the waves are
unstable in the first quadrant for
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0 < tan~'{1/V2) = 35°

where k = (k,,k,) = k (cosf, sinf). For larger k the instability region is narrower. Re-
cent studies of a refined hyperbolic nonlinear Schrédinger equation confirm this re-
sult.” The result is also preserved when the complete system of equations for deep-
water surface waves is expanded to second order in a.®> Here we propose to solve the
problem first for any a and then pass to the limit of small a.

If it is assumed that @ and & are small, but of the same order, so that the k % term
in Eq. (3) can be neglected, while B (and hence a) is arbitrary in the interval

one can find the generalized version of dispersion relation (3). It is of the following
form (see Ref. 4 in which an analogous problem is solved; the essential feature of the
method is that we expand quantities in powers of &, but choose @, to be an exact
solution of Eq. (2)):

4 2
(%’) *D(O)(ﬁ,:—_) cos20 + A(0) costd = 0,

D) =a,(8) + b, () + azb,,

A(9) =alb1 ,

o, = [2¢*B/B,H]1(1+8B2 + tan? 6 (1 ~q?) /3¢*l.

by, =[8(1~g¢?)2B, /B, H1[1-2B2tan2 0 /1 ~g21,
ab, ==8(1=x)2(1=g2—x)2(1~q2)2~4q?)/B,B,H?,

¢* =2V 1+4B / V1 +4B +1< 1,

H= (1-g¢2=2%2)(2-¢%),

B, =x, 32 =1=(2~q%)x/2(Q "92):

x = E (q9)/K(q).

(E and K are complete elliptic integrals).

Sketching the polar diagram of w/k, we obtain the analog of the C.M.A. diagram
used in plasma physics.>® For B~ — 0.25 one obtains a new unstable mode (see Fig.
1), which is localized about 7/2 (and 37/2). Analogous “nearly perpendicular” insta-
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FIG. 1. Polar diagrams of w/k (6 }: a-B = — 0.2495, a = 0.011; b-B = — 0.25, a—0. The solid curve is the
true curve; the dotted curve is purely imaginary values of w/k.

bilities are familiar in plasma physics.”® It seems probable that the usual expansion
would give our new mode if terms of order a* were taken into account. This, however,
would require much more effort than it took to obtain Eq. (4), which includes all
powers of a°.

Preliminary investigation indicates that the model of Ref. 2, which is more re-
fined than Eq. (1), should not alter our results substantially, since the essential terms
are found in both models.

For all angles such that
(cos 0) > a

our polar diagram resembles the one obtained for a—0 (Fig. 1,b).

Thus we have shown that in the limit of small  a new instability is obtained in the
dispersion relation

D(w,%k,a)=20

for deep-water waves described by a hyperbolic nonlinear Schrodinger equation. Our
analysis is restricted to small k£ and therefore does not give the maximum increment; to
find this would evidently require numerical calculations.

The author wishes to thank Prof. V. Karpman and Dr. A. Skorunskii for discus-
sion of this work.
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