Helical instability of plasma with finite conductivity
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It is shown that when the Kruskal-Shafranov condition ng > m is satisfied in a
plasma having finite conductivity there is a helical instability with an increment
larger than that for the Thirring mode.

PACS numbers: 52.35.Py, 52.55.Gb, 52.55.Ez

According to the current theoretical understanding, the main large-scale instabil-
ities in a Tokamak plasma are a helical mode described by ideal hydrodynamics and
the Thirring mode, which is a manifestation of the helical mode in the presence of a
resonant surface in the plasma. We shall show that there is yet another helical mode
which does not reduce to either of these and which, in particular, has a larger incre-
ment than the Thirring mode.

We examine a cylindrical plasma pinch of radius @ with a uniform current and a
conductivity o, located inside a sheath of radius b. Between the plasma and the sheath
there is a region of zero conductivity. This model, which permits an exact investigation
of stability, was proposed in Refs. 1 and 2, wherein the basic relationships and the total
dispersion relation were given for perturbations of the type E=E(neme+ia+r Our
problem, in contrast to that of Ref. 2, is to investigate this relation for the case of large
conductivity. We assume that ka = (@/R Jn«€1 (R is the large radius of an equivalent
torus).

It is convenient to treat the dispersion relation of Ref. 2 as the equating to zero of
a third order determinant whose columns are of the form
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Here g=m + kaB—S =m — nqla), q is the margin of stability of the Tokamak,
a

= (b2 +a*™)/(b> —a*™), I is the increment divided by the Alfvén frequency
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along the field of the current: I'? = 7,2‘_;17{’(1) = lj——, and ¢, =1 kav/((1 —B}) is a
o\d O
Bessel function of imaginary argument. The quantities 3,, ,, and ;, which are re-
sponsible for the columns being different, are solutions of the cubic equation:
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We are interested in the case w,m> 1 (for a Tokamak this quantity is of order 109).
If g #0, the solutions of Eq. {2) are, to sufficient accuracy for our purposes
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In view of the scale of 3, and I, the Bessel functions can be simplified to
f—'— kav(1—B3)=1,¢5,/$,5 = 1. The columns with /=2 and i = 3 are complex
1
conjugates. It is convenient to replace one of them by the imaginary and the other by
the real part. In addition, we divide the first column by (1 + 3,). Then, retaining the
leading terms in I, we obtain the dispersion relation
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For hydromagnetic increments, when I"?~ 1, in the second column only the up-
permost term contributes to the determinant; in the third column, only the two lower
terms. The dispersion relation reduces to the equality to zero of the bottom term in the
first column; this gives the following for the increment of the helical instability of an
ideal plasma:

[2 2 g[2 ~g(1+A) ], (5)

We now examine the case in which 1 I;— ~1. Then the uppermost terms in the
g
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first (E —1=—x« 1) and third columns are small compared to the other terms in
1

these columns, and the dispersion relation reduces to the vanishing of the uppermost
term in the second column:
I'? ka

[— —— +1a=0, (6)
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The increment I is real for g = m — ng <0, i.e., when the Kruskal-Shafranov condi-
tion is satisfied. The increment ¥ is equal to
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stability diagram of an individual helical harmonic in a plasma with finite conductivity
looks like the following:
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Taking into account the relation® y = a)o( ) for g = 0, one finds that the
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The dashed line shows the increment of the mode for infinite conductivity.

The mode obtained here is a manifestation of a helical instability in the region
ng > m, where the ideal mode is stabilized by surface currents which arise under defor-
mation of the plasma. These currents are not in equilibrium in the direction tangential
to the bounzdary of the plasma, and this causes inertial flow in a boundary layer of

thickness —;— (2mw,T, )~ /3. The sheath has no effect on this mode, even if it coincides

with the boundary of the plasma. A formal paradox is eliminated here, since the
boundary is usually fixed by equating the normal velocity v, of the plasma to zero. If
there is a vacuum space the limit 5—a means that the radial component of the magnet-
ic-field perturbation B, is zero, and this does not reduce to the condition v, = 0 for a
plasma of finite conductivity.

The existence of our mode does not rely on the model chosen for the current
distribution; the condition for its occurrence is simply that ng > m at the boundary of
the region in which the current is flowing. In our view, this explains why there is a
peaked current distribution in Tokamaks, with practically all the current flowing in
the central region, where g <2. It also explains why measures which promote peaking
of the current in the initial stage permit the avoidance of MHD instabilities as the
discharge builds.
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