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It is shown that a large-amplitude wave can propagate in a Fermi liquid at a speed
that is less than the Fermi speed. The collisionless damping in this case is
proportional to the small parameter a = (wq7)™".

PACS numbers: 67.50.Dg,

In the Landau theory of a Fermi liquid it is assumed that zero-sound excitations
with a speed w that is greater than the Fermi speed v, are not subject to collisionless
damping. Excitations with speeds w less than v, are strongly damped. In the linear
theory the collisionless damping is weak only for transverse modes whose speed is
close to vg.

In this letter it is shown that , in addition to the usual zero sound, a large-
amplitude wave can propagate in a Fermi liquid at a speed less than the Fermi speed;
in the field of such a wave there is trapping of resonant quasiparticles. In this case the
collisionless damping is proportional to the small parameter @ = (w,7)~", where
Wy = k\/¢0/m is the vibrational frequency of the trapped particles, 7 is the relaxation
time, and ¢, is the amplitude of the local energy.
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To calculate this effect, one uses the Boltzmann equation to find the distribution
functions of the trapped and untrapped particles. We seek a total distribution frunc-
tion of the form
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where n(€, ) is the equilibrium distribution function, 8¢, (r,¢) is the local energy of the
quasiparticles, 6n, = %:9661, + g, and f,, = f, is a function describing the interaction
of the quasiparticles. Here the function g(p,r,t) satisfies the kinetic equation
_a_g_ ag _ dde¢ dg £ dn, dde
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The collision integral was chosen in the simplest form: I (n} = —g/7.

Using the above expressions for the distribution functions of the trapped and
untrapped particles, one can show that under the condition 8¢/€, <1 the main contri-
bution to the energy in Bq. (1) is from the large group of nonresonant particles. The
distribution function of these particles has the same form as in the linear theory. For
this reason, the local energy in Eq. (2) can, as in the Landau theory, be considered a
harmonic function of time and the coordinates:

8¢ == ¢ cos & (3)

where & = kz — wt, k is the wave vector, and o is the frequency of the wave. The
correction to the energy from Eq. (3) is proportional to the small parameters ¢,/€, and
a.

Solving Eq. (2) with the local energy (3) by the method of characteristics, we find
the distribution functions for the trapped g, and untrapped g,, particles in the reso-
nance region as
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trapped particles, £ = —K—()—, k is the integral of motion, defined by the relation
K
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where s =
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52— —cosé = ;22— = 1, K («} is a complete elliptic integral of the first kind, (%,K) is an

incomplete elliptic integral of the first kind, and v = \/¢0/ m. In the nonresonant re-
gion the distribution function can be found in the usual way by iteration with respect
to ¢,.

If the wave is weakly damped, one can obtain the damping coefficient in the linear
theory of Fermi liquids by equating the rate of change of the total energy of the
nonresonant particles to the work done on them by the wave per unit time. The
damping coefficient obtained in this way is the same as one gets from the linear
dispersion relation. In the nonlinear region (w,7 » 1) also we find the damping of the
wave (assuming it is small) by the law of conservation of energy. The rate of change of
the energy of the nonresonant particles will be the same here as in the linear theory,
but the work done by the wave on the resonant particles will have to be recalculated.
The change in the total energy of the nonresonant particles in the field of the wave will
be found from the expression:

1
<AE > =<§ep8np> +2—<P2p'fpp»5np5np:>, (6)

Here the brackets denote averages over the wavelength A. To determine the kinetic
energy in Eq. (6), it is necessary to find (6n, ) to second order in ¢."' The work done by
the wave on the resonant particles can be obtained from the expression
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where j_.. is the resonant-particle current. We define the damping coefficient by the
relation
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Using Eqgs. (4) and (5) to evaluate (8), and the distribution function of the nonresonant
particles to order ¢ 5 to determine the change in the energy (7), we obtain
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Here y, is the linear damping coefficient for a weak wave, s, = w/v; is the relative

speed of the wave, and W (s) = %In 1+5

— 1. One can find s, from the linear dis-

—s
persion relation for a <€ 1, in which case the damping is small:

W(s) =1/F,. (10)

A numerical calculation gives s, = 0.85 for F, = 10.8

The calculation of the work done on the particles by the wave is analogous to the
corresponding problem in the theory of nonlinear damping of electromagnetic and
sound waves in metals. The result ¥, = 2ay, was obtained in Ref. 1 for the case a<1.
It should be pointed out that Eq. (9) is valid only in order of magnitude, since an
approximate expression for the collision integral was used in the kinetic equation.

In a smiliar way it can be shown that in a Fermi-liquid model with £, = f,
+ f, cos@ the collision-damping coefficient of the m = 0 and m = 1 modes, which
have a speed w < vg, is smaller in the highly nonlinear regime than in the linear
regime by a factor of a.

Numerical estimates show that nonlinear effects become important in He® at
temperatures of the order of 107> K for power flux densities in the quartz emitter of
the order of 10° W/cm?. In this case the parmeter w,r is about 107
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"For this it is sufficient to use Eq. (1) for 8¢, (r,;7). Allowance for terms of higher order in 6n, in the
expansion of ¢, does not affect the values of (5n,) to second order.
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