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Analytical expressions for the chemical potential 7(7") and the susceptibility y (T')
are obtained within the context of a simple sd model. Hybridization severely
suppresses the Curie paramagnetism for TS T, =¥V 7,/4 (4 is the width of the s
band). The theory, which gives a fractional magnetic moment, can explain the
maximum of y (T} in Pd at T=80 K.

PACS numbers: 05.70.Ce

The paramagnetic susceptibility y of many transition metals has no generally
accepted, satisfactory explanation. As is known, a rather strong temperature depen-
dence y (T') has been observed experimentally in wide interval of T, and a Curie-Weiss-
type paramagnetism, which is difficult to explain from the view-point of the collectiv-
ized-electron theory, has been observed at the end of the 3, 4, and 5 d-periods.

These peculiarities of y (T') are undoubtedly associated with the peculiarities in the
electron spectrum of d metals: however, the specific reasons for their occurrence re-
main a subject of discussion.'™ It is currently fashionable to assume that hybridization
of conduction electrons with d-electrons plays an important role in transition met-
als.>” A general consideration of a system of s and d electrons with allowance for sd-
hybridization leads to rather complicated mathematical expressions that permit only a
numerical solution. In this paper we examine a simple, special case which makes it

possible to obtain analytical results and, consequently, a clearer physical picture of the
entire effect.

We write the Hamiltonian of the s- and d-electron system in the form
A
+ +
W= 2 skakoaka + 2 edoavoavo
ky,o W o

+ = (Velkvg b a . +Hermitian conjugate),

kyv, 0 (1)

where k is the quasi momentum, v is the node number, and V is the hybridization
matrix element. The intrinsic width of the d band is ignored in Eq. {1} and V is
assumed to be independent of k.
Diagonalization of Eq. (1) gives the known spectrum with the hybridization
gap5-7:
1.
El.z(k)='2—{€d+ o * [(ey --ek)2+4V2]1/2, 2)

The density of states g(E ) = (k 2/m*)(dE /dk )" can be written in analytical form for a
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quadratic dispersion law €, = A2k ?/2m (a is the lattice parameter)

V2 172 V2 1 zmaz
g(E) =B E+‘4'E [1+(6—d-_—m2713=‘2-;§(7r). (3)

The simple formula,

X(T)=2pg [(~9f/0E ) g (E) dE, (4)

can be used to calculate y ('), where an expansion in (E — 7)/kT can be used [instead
of the usual approximation df /dE = — 8(E — ), 77 is the chemical potential] for the
f(E) distribution function, in view of the strong g(E ) dependence near €,. The value y
depends on T both directly and through n(T'), which must be determined from the
neutrality equation

Jf(E)g(E) dE =N (5)

Equation (5} corresponds to half-filling of the s and 4 bands.
We write a linear approximation in (E — %)/kT (256 = 5.5kT)

E D E<n=0 ) -1 Eom s cEcnas
fE-7n) = 0 E>n+8) f(E-n =2 ‘5 )7"]"' SExm+to.

(6)

Substitution of Eqs. (3) and (6) in Eq. (5) after integration leads to a transcendental
equation with elliptic integrals E and F for a(8) = 7(0) — 7(0) (§ =6 — &4, b = €,) of
the form:

(D-Z—G‘A)AVZ-[D+6‘(0‘— 26=2d7 b +d™=6"+bt b=/ (d~

- M2 LAt ot (0t 20V b+ 8 bt~/ ~0 D]/ 2
+ (bt =p™ )V 2{{A A E (v,,4) ~E(y,q) =E(u,q)1=47IF (y,,q)

where
D=d~Q2b+d=6d%), A* = ¥ (%4707 ),6* =0 1a (),

1 1
A=b +d, & -5 (6=+d”), 3(0) = b +—2—(d"'—b")

1

é—(xi,\/x2+4V2), (x=byd)s g =[(b=b)/(b"=p")]1/2

+
X =

(8)
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i~ -6\l 2 ot \'?
y = arcsin 1+-——b+— ) » W = arcsin -b—;—;—l;—: 5 yo=y(6"'30).

As g—1 (i.e, V?/bgl) the elliptic integrals can be represented in the form
(¢?=1-q"

i
E(y, qg)=siny + 5 qu[lntg(%u&— g—)—siny 1,

7 1 7
F(y, ¢g) =1ln tg(4—+ 21) _ 4_9’2 [tgy/cos y = ln tg(z—+ ?ZZ_):] (9)
The solution of Eq. (7) determines the temperature dependence 6 of the chemical
potential 77 as a function of the parameters €, and ¥ (the width 4 of the s band can be
assumed equal to unity without any loss of generality). Equation (7) with the use of the
approximation (9) allows an analytical treatment. We obtain from Egs. (7) and (9) at
low and high temperatures

7(8) =9(0) +6, (6<< V2/b), (10)

() =9@0)+1~=2n,)0, (6>>Vb), (1)

*
where n, = N,/N = (b /4 )*/? is the number of electrons in the s band before the hy-
bridization V is taken into account, and #, = 1 — n,. We can see from {10) and (11)
that 77(@) increases ~8 for low 6, whereas for high it increases ~(1 — 2n,)d, where
1 — 2n, <0 for the s band that is at least one-half filled, and > O for one that is filled
less than one-half. The (6 ) value decreases monotonically in the intermediate interval.

We can now use the expressions found for %(T') to calculate y {T') from Eq. (4).
Here, analogously to Eq. (6), we can assume that df /0E = 0 everywhere except in the
interval 7 — <E<% + &, in which df /9E = — (1/4kT) — cosh™*((E — n)/kT) can be
assumed equal to its value for E = 7(0); after substitution of 7{T} in (10} and (11) we
have, respectively, df/dE~ — (1/28) (0<V?*/b) and df /IE= — n\n,/kT (6> V?*/b).
Here, the values n,, n, =0,1 (the d level is located at the edge of the s band) are
excluded; we can therefore expand in i(n, — n,/’<1. Finally, we obtain

X(T) = e, (6725 )3/2,8 =K—2—A (6<<3,) (12)
° T 2bd o
X(T)=X,[14+3n,8 Jeg -~ 3V2/ (20,38 )),{60>>8,), (13)
where
Xe =Nple /RT, o =@nyny )/ 2 pp. | (14)
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FIG. 1. General form of the susceptibility y (7') and its com-
ponents. The solid curved with a maximum was obtained
from the solution of Eqs. (7), {(12), and (13}. y, is the Curie
susceptibility in absence of hybridization. The dashed line
corresponds to the finite width 4,(#0} of the d band.

Thus, starting from T'= T,[ = (2/5.5)5,] (28, is the width of the hybridization
gap), the susceptibility first increases rapidly ~[(T'— T,)/ T,)’? then it reaches a
maximum and starts to decrease, approaching the Curie law in accordance with (13)
(see Fig. 1). As Eq. {13) shows, at high T values y (T} consists of three contributions:
Curie, Pauli (y ;) for s electrons, and hybridization. Equation (14) corresponds to the
divisibility of the magnetic moment, which is automatically present in the model being
considered.

For T < T, the hybridization completely cancels out y, since kT is less than the
hybridization gap. However, when the intrinsic width of the d band or the V' (k) depen-
dence is taken into account, the gap will disappear (for 4, > ¥?/4), so that at T=0
the Pauli contribution from the d band y & =N, u3/4, can exist. In this case y 3,
which is frozen in (12) by the hybridization gap (see dashed line in Fig. 1), is partially
thawed out. A curve of the type shown in Fig. 1 is observed in Pd, and its explanation
has been a subject of discussion. Thus, it is pointed out' that the maximum of y (T') in
Pd may be due to a saddle-point-type singularity in the carrier spectrum. Our result
seems to correspond to that of Ref. 1, but it contains a clearer physical picture that
explicitly reflects the effect of sd-hybridization on y (T').

For comparison with the experiment we can take into account the exchange
enhancement @: Yennan (') = y (T')/[1 — ay (T')]. This effect is uaually used to obtain the
strong T-dependence of the susceptibility observed in transition metals. Our calcula-
tion shows that the hybridization effect can also give a strong 7-dependence of y even
when the enhancement is disregarded.

The author thanks I. V. Svechkarev for calling attention to the y problem in Pd,
and A. S. Panfilov and E. V. Rozenfel’d for their discussions.

0. K. Andersen, Phys. Rev. 82, 883 (1970).

*Yu, P. Itkhin, Zh. Eksp. Teor. Fiz. 66, 1005 (1974) [Sov. Phys. JETP 39, 490 {1974)].

*V. N. Manchenko, A. S. Panfilov, and 1. V. Svechkarev, Zh. Eksp. Teor. Fiz. 71, 2126 {1976) [Sov. Phys.
JETP 44, 1118 (1976)].

“M. Shimizu, T. Takahashi, and A. Katsuki, J. Phys. Soc. Japan 18, 240 (1963).

*Yu. P. Irkhin, Fiz. Met. Metalloved 11, 10 (1961).

°D. A. Smith, J. Phys. C2 1, 1263 (1968).

K. A. Kikoin and L. A. Maksimov, Zh. Eksp. Teor. Fiz. 58, 2184 (1970) [Sov. Phys. JETP 31, 1179 {1970)].

191 JETP Lett, Vol. 32, No. 3, 5 August 1980 Yu. P. Irkhin 191





