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The scaling theory of charge-carrier localization in disordered semiconductors'
(see also Ref. 2), can lead to rather radical consequences. Although the critical com-
ments** appear to be very serious, the logical relationship between them is not com-
pletely clear: objections of an analytical character are based on a consideration of
scattering with spin flipping, whereas the Anderson Hamiltonian, which contains no
random magnetic field, was used for a numerical calculation.

In this paper we focus attention on the fact that the concept of minimum metallic
conductance in a three-dimensional problem can be correlated with the basic idea of
scaling theory'? if one of the not so obvious assumptions of this theory is rejected.
Specifically, it was assumed in Refs. 1 and 2 that the dimensionless conductance g
defined by the equation
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is everywhere a continuous and differentiable function of the scaling parameter L and
hence of the dimensionless energy € = (E — E_)/E, (E, is the mobility threshold and o
is the normal conductance of the material). This assumption rejects the idea of a
nonzero, mimimum metallic conductance o,,. In fact, if o,, #0, then the gle) function
must have a first-order discontinuity point for € = 0. If (and only if} the scale param-
eter is assumed to be a continuous function of ¢, then the g{e) function [or g{L }] must
also have a singularity at ¢ =0. We assume that the g{L ) function is sufficiently
smooth at all the remaining points. Thus, the basic equation of the scaling theory
remains valid everywhere, except at the singular point, (we use the same symbols as
those in Refs. 1 and 2):

dlng/dlnLl =8(g). (2)

The asymptotic form of the £ (g) function for g» 1 and g€ 1 were investigated in Refs. 1
and 2. In particular, for g» 1 we have 3 (g}—>d — 2. This asymptotic form remains valid
in our problem if g>g. = (24 /e%o,, L ¢ ~°. Focusing attention only on the three-di-
mensional problem, we can disregard the correction term of the order of g~' that is
possible in principle (but placed in doubt in Refs. 3 and 4). For g = g, (g} the function
must have a singularity; thus, Eq. (2) must be written separately for g>g,. and g <g.,
and as g—g, (from above or from below) the left-hand side of Eq. (2) should be consid-
ered the derivative from the right or from the left.
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We consider the region € > 0(g > g.). We obtain, according to (2), for g close to g,

1 8 4
L= L exp{ — [ —£_1}, (3)

° 8. g, Ble)

where g, = g. + a€™ is some initial point (@ > 0,m > 0).

Assuming that

B(g) = vig g, )" 1>n>0, (4)
we find
m jlan
LNexp —-(-a—-.c_i__ .
vge (1 =n)

It follows from this that for d = 3

(aem)l-"
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This expression remains different from zero as e—0. Thus, we can see that the concept
of a minimum metallic conductance can be retained in scaling theory, if certain sys-
tematic properties are not linked to the 3 (g) function a priori. In other words the
assumption that the S (g) function has a certain analytical structure as g—g_ is equiv-
alent to the assumption that a minimum metallic conductance is absent or present in a
three-dimensional system. This means that additional independent information is
needed for an unambiguous solution of the o,, problem.

'E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan, Phys. Rev. Lett. 42, 693
(1979).

2E. Abrahams and T. V. Ramakrishnan, J. Non-Cryst. Solids 35, 15 (1980).

3P. Lee, Phys. Rev. Lett. 42, 1492 (1979).

“P. Lee, J. Non-Cryst. Solids 35, 21 (1980).

205  JETP Lett, Vol. 32, No. 3, 5 August 1980 V. L. Bonch-Bruevich 205





