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The average values of the resitivity p and conductivity o are calculated for a finite,
disordered system of length x. For x>/ {/ is the free path length) it is found that
(p")~exp[(n® + n)x/I]and (o ") ~exp( — x/4]). The resistivity distribution
function is reconstructed and the resistivity logarithm is shown to be a Gaussian
distribution.

PACS numbers: 72.20. — i,

One of the chief difficulties in the theoretical study of disordered systems (DS) is
the need to average physical quantities over a certain set of random parameters, for
example, over the locations of impurities, over the exchange integrals, etc. In some
cases such averaging can be performed explicitly, where the result obtained has a
direct, physical meaning because of self-averagability of the quantity being studied (for
example, the density of states and the thermodynamic characteristics associated with
it). In the general case it is necessary to calculate the probability distribution of the
values, rather than the average values. A disordered system can be characterized by
some averaged parameter only if its distribution has a negligibly small width.

Arguments [1,2] have been presented in favor of the fact that the distribution
W { p,x) of the resistivities p for a disordered system of length x {the free path length is
taken as a unit length) does not become narrow as x—w. A calculation of
( p) ~explax) and {p*) ~exp{Bx) (a,f ~1), which showed ' that B> 2a, was a direct
demonstration of this assumption. This shows that the W (p,x) distribution has a flat
tail on the side of large p.

Our goal is to explicitly find W (p,x) for a one-dimensional, disordered system
with a disorder in the form of white noise, by using the method developed by Berezins-
kii.> We shall show in particular that ( p") ~exp{(n* + n)x] and that the quantity
y =Inp has a Gaussian distribution near y, = x with a variance (2x)'/2.

Let us define the dimensionless resistivity of the disordered system in terms of its
transmission coefficient T by using the relationship p = 1/T. By introducing the re-
flection coefficient R = 1 — 7, we can relate { p") to (R ")=R,,.

. - ® fm+n-1)! oo
<pt(x)>=<(1-Rix)) >=m§0m1?m’x) - _:1)!‘!"1? -lRm(x)a'm.'

(1

We have taken into account that m>» 1 accounts for the major contribution to the
sum when x> 1. The values R,, (x) obey the equation®
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A Laplace transformation with respect to 4 gives
2
ARm_Bmo =m (Rm+1+Rm-1_'2Rm)’ 3)

where A is the Laplace parameter. For m> 1 this equation can be replaced by a differ-
ential equation whose solutions, as it is easy to see, have a power form with respect to
m. After eliminating the solution that increases with m and determining the second
integration constant from a comparison with the solution for m~1 (see Ref. 4), we
obtain

71/ 2 I'(g + IT (g +2) -
R_(\) = T (4m)~? Tlg 7 372) v g = VA+1/4-1/2. (4)
We should take into account for the inverse Laplace transformation that R (4 ) has
a pole at A =0 and a branching at A = — 1. In the limit Inm > x»1 we obtain
a M (a+1/2) m {72 1 In m
Rn®) = oo T eas 1)(7) exp [' (a2'+T) "]3 S
(5)

After substituting Eq. {5) in Eq. (1), we can see that the integral with respect to a
has a saddle point near a = n 4}, so that

1
<o > m )
P 2n(2n_.1.”exP[(n +n)x]. "

It is easy to see that the probability distribution, which gives the moments (6), is

Bla+1/2, 1/2 1
Wip,uw)- 2Blarl/arl/ )exp[“éz’“f)”];

(mpx) ! 72

where B is the Euler function. It follows from this that the quantity y =1Inp has a
Gaussian distribution

Wiy, x ) = (4ox )=1/2 expl-(y —x)2/4x ] (8)

with a variance Z; = (2x)'?¢y = x.

For comparison, we calculate the conductivity moments (0 ")=(T""). Because
T = Z,x) [the value Z,, (x) was previously introduced by Berezinksii; see also Ref. 4],
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our problem reduces to the calculation of Z ['(x)=(Z (x)). Just as in Ref. 3, we can
introduce

(=R

zr) - 3

m"l

n
Z 15( 2 m, = m). 9)
i i=1

1 m

These quantities obey the following system of equations:

dz (™
m
dx

=(m+n )22 «m?Z(W [ (m+n)? +m? = n? +al2(r)

z(":') 0)=25,. (10)

o

We perform a Laplace transformation with respect to x and go over to a differen-
tial equation, taking into account the case m>» 1. Thus, we obtain

(n)

9z, 92z(n)
/\'Z’fl")—Bmo = (n? —n)Z(”:'}+2mn . —'mz—-a?—' (11)
The solutions of this equation have the form
2n -1 —_—
Z0 () = f (9 g = "2 A 1/4. (12)

The f{4 ) function can be found only by solving Eq. {11) for m ~ 1. It is important
that Eq. (12), expressed as a function of 4, has a branch point at A = — 1. It is clear
that this property holds for Z (1), so that after inverse Laplace transformation the
main dependence of Z{' on x has the form exp( — x/4). A more precise calculation
using numerical methods makes it possible to find the pre-exponential factor, so that
finally

5712
<o (x)>= 2" (z) = —;'— C(n) x=3/ 2 exp (~x/4). (13)

The C (n) coefficients for » ranging from 1 to 5 have the values 1, 0.25, 0.14, 0.096,
and 0.072. We can see that all the moments (¢ ") are equal within the accuracy of the
numerical pre-exponential factor. This means that the main contribution in the aver-
aging comes from the part of the distribution function of the transmission coefficient
that has the form

w (Tyx) =x=3/2 e"‘/4u(T)7 (14)

where the u(T) function is independent of x. The result obtained indicates that the
probability of transit without scattering in a disordered system of length x decreases as
exp{ — x/4).
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Generally, the probability distributions of the quantities =T and p=1/T
should be expressed in terms of each other in a trivial manner. Our calculation
showed, however, that if the moments (p ”) and (o ") are known, then these functions
can be reconstructed only in that region of variables which gives the main contribution
to the corresponding moments. Of course, these regions turned out to be different for
T and 1/T.

Anderson et al.' obtained the probability distribution of the resistivity logarithm
(8) and used it to calculate the average conductivity (o), which was found to be

independent of the length of the disordered system with exponential accuracy. Our .

results show that, because of their derivation method, Eqs. (7) and (8) can be used only
for p==Iny % exp(2x) [the saddle point, which determines the normalization of the func-
tion (7), is located at p = exp(2x)]. In the calculation of the average of o = 1/p using
{7), we can see that the integral converges at p~ 1, i.e., outside the region of applicabil-
ity of Eqgs. (7) and (8). A direct calculation of (o "(x)) gives Eq. {13), which differs from
that in Ref. 1 in the case n = 1.

A knowledge of the moments of the quantities 1/7 and T makes it possible to
reconstruct W (1/T,x) in the region 1/TR exp(2x) [Eq. (7)] and W (Tx) in the region
T~1 [Eq. (14)].

Let us now indicate the possible experimental evidence of the effects being consid-
ered. Experiments using isolated, one-dimensional disordered systems have not been
performed heretofore. When such disordered systems form a quasi-one-dimensional
conductor, their conductivities must be averaged, so that the net conductivity will be
given by Eq. (13) for n = 1, which is multiplied by the number of disordered systems.
Another possibility involves using a quantum-optical analogy. Let us assume that a
plate of a transparent material has a random distribution of the refractive index along
one direction. At a sufficient thickness this plate will almost completely reflect the
light over a broad wavelength band, and the distribution of the transmission coeffi-
cient T for an ensemble of plates fabricated under statistically identical conditions will
be defined by Eqgs. (7) (after substituting p = 1/7T") and (14). This means that an increase
in the thickness of the plates will lead to a relative narrowing of the In(1/7) distribu-
tion and to an exponential increase of the relative mean-square deviation of the value
1/T, consisted with the fact that {(1/T2) ~ (1/T )3, as follows from Eq. (6) for n = 1
and n=2.
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