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The L-A pair, corresponding to the Einstein-Maxwell equations, is found for. the
case in which the space-time metrics and the 4-potential of the electromagnetic
field depend only on two coordinates, and the N-soliton solutions are formulated.

PACS numbers: 04.20.Jb

The methods of the inverse scattering problem, used in Refs. 1,2 for constructing
exact (soliton) solutions of Einstein’s equation in vacuum with metrics, depending only
on two coordinates, and permitting generalization to the case in which an electromag-
netic field is present with the invariant® F,, F** = 0, are also applicable in the general
case of the presence in space of gravitational and electromagnetic fields whose metrics
and 4-potential have the form.

ds? = datds¥ + g,y dx%dx®, 4, =10,0,4, 1, (1)

8y
where u,v,... = 0,1;a,b,... = 2,3; and the functions g,,,.g,, and 4, depend only on x*
and satisfy the Einstein-Maxwell equations without any additional restrictions on the
form of these fields.

By a coordinate transformation of x* (without the participation of x“)g,, can be
reduced to the conformally two-dimensional form g, = — f7,,,, where />0, and 7,,,
= const. For stationary axisymmetric fields in cylindrical coordinates x* = [p,z}, x°
{t.¢ ], we must set 7, = diag(1,1). For fields depending on the time and one spatial
coordinate, i.e., for x*{t,x} and x* = {y,z] we can choose, for example
N,, = diag (— L,1).

The Einstein-Maxwell equations {for y =c¢ = 1)

1
RE == 2 (F Fhm = 8F P FOm) v, P =0, By = 8,41 = 0, 4,02)

(R =0 for electrovacuum fields) separate into two groups of equations when (1) is
taken into account, giving a closed system for g, and 4, and equations that define fin
quadratures in terms of the found g, and 4,,.

The closed system of equations for g,, and A4,, obtained by the substitution of (1)
into (2), can be written in an equivalent complex 3x 3 matrix form"

7, U, +_-2‘-— UL, =0, 9, U, =0, 3)
a.
8, (C=4iBQ) ==2(QU, ~UQ), @)
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==4; v
CU, =-4i€ ae/ QU,, (5)

where “ 4 " denotes the Hermitian conjugate, € = + 1 is a sign, opposite to the sign
0 -

1 0),6; =17,,€" (the indices u,v,... are lowered

and raised by means of 77, and its inverse 7**; a is any (anisotropic) solution of the

equation 7°d,d,a = 0, and B is defined in terms of @:d, 5 =€, "d,a. The matrices G
and (2 have the form

of the determinant 7, ;6" = (

o (T ey ),
Ty : 1 ’ 0 0 0
and
od 0 1
Bab =~€och %€y, s 4, =-€,, Re®° ue,, =(_1 0).

We note that Egs. {(3) contain only the matrices U, (u = 0,1) as unknowns, Egs. (4)
actually serve to define the matrix G in terms of U,,, and Eqgs. (5) will then play the role
of additional conditions on the choice of the solutions of (3).

In connection with the system (3) we consider the linear system (analog of the L-4
equations) for the complex 3 < 3 matrix function ¥, containing the additional complex
parameter A:

D,¥ =AYU,Y, (6)

where, by analogy with Ref. 1, the operators D, =d, + P,(d/dA); the functions
AP, and the matrix ¥ depend on x* and A, and the matrices U, only on
x,. If P, and A}, are chosen in the form

9F \~1 i €F&Y 4V
- — . V:——_ ___._E.._—_E,
P, (aah) G (@F +B)y Ay Ymom —

where F is an arbitrary function of x* and A, then the operators D# commute and the
integrability conditions of the system (6) are identical with (3). It is convenient to
choose F(x*,4) such that P, = 0. For this we set aF + = 4.

It is remarkable that with the introduction of this same complex parameter A in a
natural manner the Eqgs. (4) and anti-Hermitian parts of (5) can be represented in the
form

D# 14 +A#V( YU, -U* W) =0, W=6G6 +4i(w-p)Q,

which is equivalent to the condition ¥ * W¥ = K (w), in which K (w) is an arbitrary
Hermitian matrix, depending only on w=aF + S.
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Following Ref. 1 again, we introduce in place of ¥ the new matrix variable
x:¥ =y¥, where ¥ corresponds to some chosen exact solution U,, W. Then we
obtain for y.

o °
+
Dyx =AU, X-XxU,)), Xx*"Wx =W ™)

In addition, it must be required that x be regular in the vicinity of w=e0 and x(e)=1.
1

The N-soliton solutions correspond to the meromorphic structure of y and y ~'in
the w plane:
N N
R N
X =1 + % Lo, x-t =] +3 2L (8)
l+1 W= l=1 W= W .

Substitution of (8) into (7) gives the following results: the poles i, (/ = 1,2,...,N ) com-
plex conjugate to w,; the matrices R, are degenerate:R, = n, X m,; the vectors m, are
represented in the form m, = k,M,, where M, =¥ ~'(w,), and k, (for each
! =1,2...,N) are arbitrary constant three-dimensional complex vectors; the vectors n,
are determined from the algebraic system

N

Z F n = V r?l F =
kil "l e kl

I=1 Wy =~ w,

mV, m o -
L kk V, =W (w, ) .

Finally, for the N-soliton solutions we have

o N
= 1 zo—: i +Q » -2
U, =U, +2i3,R, G =C ~4i(R*Q+0QR), R k=1Rk.

Substitution of the solutions obtained in general form into the additional condi-
tion (5) transforms them into identities. Consequently, the solutions found satisfy the
Einstein-Maxwell equations.

The author wishes to thank V. A. Belinskii for discussing the results.

! The complex self-dual form of writing the equations, found in Ref. 4, was used in the derivation of Egs.
(3)-(5).
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