Observation of the delocalization threshold of the H⁻-like states of impurity centers in doped semiconductors

E. M. Gershenzon, V. A. Zayats, A. P. Mel'nikov, R. I. Rabinovich, N.

A. Serebryakova, and Yu. V. Tovmach¹

V. I. Lenin Moscow State Pedagogical Institute

(Submitted 19 June 1980)

Pis'ma Zh. Eksp. Teor. Fiz. 32, No. 5, 344-347 (5 September 1980)

The concentration threshold N_c of delocalization of excess carriers is determined from the qualitative variation of the photoconductivity (PC) spectra, and its dependence on the temperature T is investigated. It was determined that N_c is almost two orders of magnitude lower than the concentration N_M corresponding to the Mott transition.

PACS numbers: 71.55.Ht, 72.40. + w, 72.20.Jv,

At present, there is a great deal of interest in questions relating to delocalization of electrons in disordered systems. One example of such a system is a weakly compensated semiconductor that has been doped with shallow impurities. Either one electron (neutral hydrogen-like center) or two electrons -a "ground" electron with a binding energy $E_0 = \hbar^2/2ma_0^2$ and with a wave-function decay length a_0 and an "excess" electron with a binding energy $E_i \approx 0.55 E_0$ and a decay length $a_i = (1/\hbar)\sqrt{2mE_i} \approx 4.2$ a_0 (H⁻-like center)¹-can be in the impurity center. In this case two types of delocalization are possible. According to theoretical and experimental data, the delocalization of ground electrons occurs at $N = N_M$, where $N_M = (8-15) \times 10^{-3} a_0^{-3}$ (Mott transition).2 Delocalization of "excess" electrons should lead to the formation of a conducting impurity band [upper Hubbard band (UHB) or D - band] in the disordered system. The so-called σ_2 conductivity, which is characterized by an activation energy ϵ_2 , occurs along this band.2 In the absence of charged centers, this delocalization should occur at $N = N_x$, where $N_x = \lambda a_i^{-3.3}$ The exact value of the parameter λ is unknown. The delocalization threshold N_{r} is difficult to experimentally determine from the static σ_2 conductivity under equilibrium conditions: it must compete with other conduction mechanisms.2

Spectral measurements of the photoconductivity are more suitable for determining N_x : the conditions can be chosen in such a way that the photoconductivity, which is not associated with the phototransitions of "excess" carriers would be almost absent in the spectral interval of interest, and the H^- -like states would be populated as a result of capture by neutral impurities which are produced by the impurity (background) light.

We have determined the concentration threshold of delocalization of the H⁻-like states; the spectral measurements of the photoconductivity $\sigma/\sigma(h\nu)$ of the doped $(N=3\times10^{16}-10^{18}{\rm cm}^3)$ and weakly compensated (k<0.01) Si:B and Si:P samples were made using a Fourier spectrometer $(h\nu=1-30~{\rm meV})$ at $T=1.5-15~{\rm K}$ and an impurity illumination. The photoconductivity spectra of Si:B for different N and $T=4.2~{\rm K}$ are

FIG. 1 (a) PC spectra of SI: B for T = 4.2 K and $N(X10^{17} \text{ cm}^{-3})$: 1-0.1, 2-0.5 -0.9, 4-2.5, 5-4.5; (b) PC spectra of Si: P for $N = 3 \times 10^{17} \text{ cm}^{-3}$ and T(K): 1-2,3-4.2, 3-5.5, 4-6.2, 5-7.

shown in Fig. 1a. The spectrum changes as N increases--for $N=N_c^{pc}\approx 2.5\times 10^{17}$ cm⁻³ the slope of the short-wave decay decreases, and then the photoconductivity begins to increase monotonically with frequency. Similar changes were observed for Si-P $N_c^{pc} \approx 5\times 10^{17}$ cm⁻³ and T=4.2 K) and for Ge:Sb $(N_c^{pc}\approx 2.6\times 10^{16}$ cm⁻³ and T=1.46 K].⁴ An analogous transformation of the spectrum can be obtained with some samples by increasing the temperature (Fig. 1b). Figure 2 shows the $T_c(N)$ values for Si:B and Si:P, where T_c is the temperature at which the slope of the short-wave decay decreases by 10–15%. Figure 3 shows the $\delta\sigma(T)$ dependences for several Si:P samples; the T_c values are indicated by the arrows. We can see that for $N>10^{17}$ cm⁻³ $\delta\sigma$ begins to increase with T at $T\approx T_c$.

A monotonic increase of absorption with frequency is characteristic of band-to-band transitions. Under experimental conditions the surface recombination is unimportant because of the small absorption, and the absorption spectrum should be similar to the photoconductivity spectrum. Therefore, a qualitative change in the PC spectrum (Fig. 1) indicates that the "excess" carriers are delocalized. The degree of delocalization increases with N and T. We note that at sufficiently high T the N_c^{pc} values are much lower than the N_c^{σ} values obtained from measurements of the σ_2 conductivity (Si:P $-N_c^{\sigma} \approx 1.2 \times 10^{18} {\rm cm}^{-3}$ and $\epsilon_2 \approx 10 {\rm meV}^5; {\rm Ge:Sb} - N_c^{\sigma}$

FIG. 2. $T_c(N)$ dependence for Si:B (Δ) and for Si:P (\bullet), calculated Δ values for Si (1) and for Ge (2), and δE for Ge:Sb (3), for Si:B (4), and for Si:P(5).

FIG. 3. $\delta \sigma(T)$ dependences for Si: P with $N(x 10^{17}$ cm⁻³) equal to: 1-0.9, 2-3, and 3-5.

 $\approx 2.9 \times 10^{16} \text{cm}^{-3}$ and $\epsilon_2 \approx 3.9 \text{meV}^6$; Si:B $-N_c^{\sigma} \approx 6 \times 10^{17} \text{cm}^{-3}$ and $\epsilon_2 \approx 16 \text{meV}$). To obtain more detailed knowledge of the examined care, we must determine the nature of the localized states. We assume that they are molecular-type (H^-H^+) ionic states produced by the trapping centers $(D^+ \text{ or } A^-)$. The binding energy of an "excess" carrier in these states is $E = E_i + (e^2/\kappa R)$, is the dielectric constant and R is the distance to the trapping center. The energy gap between the filled localized states and the bottom of the UHB in this case is $\delta E = \Delta - J$, where $\Delta = (e^2/\kappa)(4\pi N)^{1/3}$ and J is the exchange-interaction energy. The value of J depends of the fluctuational spread Δ_{ij} of the levels of adjacent centers, due to the presence of charged impurities.⁶ If the influence of Δ_{ii} on J is disregarded, the dependence of J on N, is taken into account, i.e., $J(N) \sim \exp(-2N/a_i)^{1/3}$, for a known a_i , and the ϵ_2 values are used at N_c^{σ} as tiepoints, then we can estimate δE (curves 3-5 in Fig. 2). We note that the $\delta E(N)$ and T_c (N) dependences are qualitatively similar. The divergence of $\delta E(N)$ and $T_c(N)$ for Si:B at $N > 3 \times 10^{17}$ cm⁻³ may be due to a decrease of the effective Bohr radius of the ground state⁸, and, hence a decrease of a_i . For sufficiently heavily doped samples $(\Delta \approx J)\delta E \ll \Delta$, which primarily determines the value of T_c . The carriers are ejected from the localized states into the UHB; in this case the total number of "excess" carriers is not reduced (Fig. 3). For smaller N the value of $\delta\sigma$ decreases with increasing T (Fig. 3) and, consequently, the total number of "excess" carriers and charged centers is reduced. In this case a decrease of δE , which is caused by a decrease of Δ_{ii} and an increase of J, contributes to a relative overpopulation of the localized and delocalized states as T increases. It follows from this that the optimum temperature $T \gtrsim T_c$ must be chosen to determine N_x . Thus, according to the estimates of Ge:Sb, N_x must be equal to $\approx 5 \times 10^{15} \text{cm}^{-3}$ and $T_c \gtrsim 2.5$ K. Therefore, the value N_x $= 2.6 \times 10^{16} \text{cm}^{-3}$ obtained in Ref. 4 is too large because of the small value of $T = 1.46 \text{ K} < T_c$.

Thus, the results of our work show that the critical impurity concentration for delocalization of the "excess" carriers is $N_x < 0.05 \ a_i^{-3} \approx 7 \times 10^{-4} \ a_0^{-3}$, i.e., it is almost two orders of magnitude lower than the concentration characteristic of the Mott transition.

- 1, Staff members of the Institute of Physics, USSR academy of Sciences.
- ¹H. Bethe and E. Salpeter, Kvantovaya mekhanika atomov s odnm i dvumya elektronami (Quantum Mechanics of Atoms with One and Two Electrons), GIFML, Moscow, 1960.
- ²N. F. Mott, Metal-Insulator Transitions (Russ. Transl., Nauka, Moscow, 1979).
- ³A. L Efros, Usp. Fiz. Nauk, 126 41 (1978) [Sov. Phys. Usp. 21,746 (1978)].
- ⁴H. Taniguchi, S. Narita, and M. Kabayashi, J. Phys. Soc. Jpn. **45**, 545 (1978). ⁵S. Togotomi, J. Phys. Soc. Jpn. **38**, 175 (1975).
- ⁶E. Davis and W. Compton, Phys. Rev. **A140**, 2183 (1965).
- ⁷V. N. Aleksandrov, E. M. Gershenzon, A. P. Mel'nikov, R. E. Rabinovich, and N. A. Serebryakova, Pis'ma Zh. Eksp. Teor. Fiz. 22, 573 (1975) [JETP lett. 22, 282 (1975)].
- ⁸I. N. Kurilenko and L. B. Litvak-Gorskaya, Fiz. Tekh. Poluprovodn. 8 1186 (1974) [Sov. Phys. Semicond. 8, 768 (1974-75)].

Translated by Eugene R. Heath

Edited by S. J. Amoretty