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It is shown that the mechanism of electron-phonon relaxation in a two-
dimensional, degenerate electronic system is intrinsically different from that which
follows from the Bloch-Peierls theory. This leads to a qualitative difference in the
behavior of the electrical resistance of two-dimensional and three-dimensional
metallic systems.

PACS numbers: 72.15.Lh

At fairly low temperatures, when the heat pulse of a phonon is small compared
with all the characteristic dimensions of the Fermi surface (FS), and the phonon colli-
sions between each other can be disregarded, the distribution function y of nonequilib-
rium electrons obeys the equation’

divD (yX -aly X })=cEn, (1)

Here, the diffusion tensor 5, which is proportional to the square of the electron-
phonon interaction constant, depends on the temperature at T3, div and V are two-
dimensional differential operations in the plane tangential to the FS, n are unit-vector
electron velocities, E is the electric field strength, and a{Vy | is an integral linear
functional associated with the phonon nonequilibrium. Equation (1) describes the
steady-state diffusion of electrons which are continuously “produced” on one-half of
the FS (where E - n> 0) and *‘vanish” on the other half (where E - n < 0). Bloch’s law
for the temperature dependence of electrical resistance follows from this equation:
ps~T>.

The situation is totally different when the FS is cylindrical. We can prove rigor-
ously that the integro-differential equation (1) is unsolvable in this and only this case.”
.This request is associated with the peculiarities of a two-dimensional system: the given
phonon with a momentum q can interact with one or several pairs (p, — p) of symmet-
ri¢ states on the FS (at the point p q - n = 0), but these states in turn interact only with
the phonons whose momenta are parallel to q. In this respect, the two-dimensional
system differs fundamentally from a three-dimensional system in which any electronic
states can exhange phonons between one another. Thus, an electron-phonon system
can be broken down into groups between which a momentum transfer is impossible.
As the same time, the diffusion flow at a given point p must have a certain, well-
defined direction, and hence the phonons flowing in this direction must be continuous-
ly absorbed (or those flowing in the opposite direction must be continuously pro-
duced). The relaxation process, therefore, is locally “‘cut off’ at each point on the FS.
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FIG.1,

We note that this pertains only to a diffusion approximation; a simple division
into groups vanishes if the finite phonon momentum is taken into account. However,
certain characteristics of the FS geometry in this case are important. In higher orders
of expansion over the small parameter q/py(pr is the characteristic size of the FS) the
relaxation is possible only if the FS has several pairs of points with parallel normals
{this always holds for an open FS). The radii of curvature at these points in this case
must be different. Such “superdiffusion,” described by a sixth-order differential equa-
tion, is characterized by a relaxation time 7,4,~T -9,

On the other hand, a relaxation can occur irrespective of the structure of the FS,
if the finite phonon energy is taken into account. The electronic states. which can
interact with a phonon with a given momentum g, in this case are not strictly symmet-
rical. (An interaction between the centrally symmetric states, as can easily be under-
stood, does not lead to a relaxation of the odd y (p) momentum distribution.) As seen in
Fig. 1, p+ q# — p* and p* + q# — p, where the characteristic deflection angle is
a ~s/v (s is the sound velocity and v is the electron velocity). Under these conditions a
coupling of the electronic states occurs via diffusion in the phonon momentum space
with a characteristic angular step of the order of sv.

Finally, a relaxation mechanism, which is based on relatively infrequent collisions
between the phonons, is also possible. By taking these processes into account, we
obtain a diffusion equation such as (1), in which the diffusion tensor D is proportional
to the phonon-phonon collision frequency. The nonlocal nature of the diffusion in this
case is associated with the momentum transfer between the phonons that interact with
different electrons. The corresponding relaxation time can be represented in the form

2
T =~ 7 le ——PF ~T=°
eff ~ "pp n,\ g :

Here, 7,, is the time of the free flight relative to the phonon-phonon collisions,
n,~T /€ is the number of electrons in the thermal layer, and n, ~ T? is the number
of phonons. It is clear that 7,,n,/n, represents the time during which an electron is
displaced a distance ¢ along the FS as a result of one phonon-phonon collision; the

(pr/q)? factor represents the number of Brownian steps needed for a relaxation.

A resistance can also be attributed to small deviations of the FS from a truly two-
dimensional surface.
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The contributions of all the foregoing mechanisms are combined in the following
approximate equation:

T\a s \2 2_!
R Ay e |

4

Here @ is the Debye temperature and y is the characteristic angle of deviation of the
FS from the cylindrical shape; the numerical coefficients have been dropped.

It should be pointed out that we obtained the given results by assuming that the
phonon spectrum is three-dimensional. If, however, the crystal is two-dimensional in
terms of elastic characteristics, then the interaction of electrons with bending vibra-
tions should be taken into account.

YAt very low temperatures this dependence is replaced by an exponential dependence in metals with closed
Fermi surfaces, and a term taking into account the transfer processes should be added in Eq. (1).
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