Dynamic form factor of superfluid 4He
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The dynamic structure factor of superfluid “He was observed near absolute zero
temperature for frequencies in the range 7~ '€ @ € T /#. An interpretation of the
results of the experiments' on inelastic scattering of neutrons by superfluid ‘He is
given.

PACS numbers: 67.40. — w, 61.12.Fy, 61.25.Bi

In recently published experiments on inelastic scattering of neutrons by liquid
“He, Woods and Svensson' measured the temperature dependence (in the range of 1 K
to 7,) of the dynamic form factor o{w,k ), which can be represented in the form

ps (T) p,(T)

olw, k)= o {w, k) + —— o, (0, k). (1)
p

Here o, {w,k ) is the dynamic form factor of normal *He at T =227 K> T, =2.18 K,
which for a given k (k varies from 0.8 to 1.96 A7Y, represents a broad velocity
distribution of the scattering intensity that is almost temperature independent in the
range of T, to 4.21 K; o,(4,k ) consists of a narrow, d-shaped peak corresponding to
excitation of phonons and rotons with a Landau spectrum w(k ) and an addition associ-
ated with miltiphonon processes; and p (7') and p,, (T'), respectively, are the densities of
the superfluid and normal components of superfluid “He.

The fact that the intensity of the singular part of the microscopic value of o{w,k )
turned out to be proportional to the hydrodynamic macroscopic value of p (T') is
surprising from the theoretical point of view, although it seems to be experimental
proof of a known result obtained by Hohenberg and Martin® from qualitative consider-
ations. Griffin® also attempted to explain Eq. (1) qualitatively; the singular part of
olw,k ) was interpreted there as the part produced because of the processes that include
the transitions of particles from the condensate to the supercondensate part. As shown
by Wong,* the interpretation given by Griffin® is incorrect, since the intensity of the
scattering processes that include the condensate-supercondensate transitions is propor-
tional to the condensate density n,, rather than to the superfluid density.

The calculation of o{w,k ) in the quantum region @ > T /#, in which the experi-
ment was performed,’ is impracticable. It is possible, however, to determine o{w,k ) in
the collisionless regime @ > 1/7, if the condition for adiabaticity of the external pertur-
bation U (w,k ) is satisfied: @ <€ T /#i. The dynamic form factor o{w,k ) can be expressed
in this region in term of the imaginary part of the generalized susceptibility a(w,k)
(Ref. S) by the relation
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o{w;, k)=

a(w, k) (2)

where'm is the mass of an *He atom, and the system of equations for determination of
the generalized susceptibility consists of a kinetic equation for the distribution function
of phonons n(p,r,t), supplemented by the equations for the density p and superfluid
velocity v,:

on on OH Oon OH _momg 3)
at ar ap ap or T
P i dr) =0 4
5+ div pvy, + fpn ) =0, (4)
v, U v} de
ry +V (u, et +f-a-;—ndrp) = 0. (5)

Here H = €(p) + pv,,€(p) = cp(1 + yp?) is the phonon spectrum, where y depends on
pressure, y >0 for P< 17 atm, y <0 for P> 17 atm, y, is the chemical potential at

absolute zero, du, = czd—p, and U(t,r) is the external field. Equations (3}—5), which

were used to calculate the temperature correction for the velocity of high-frequency
sound (see Refs. 6 and 7), are valid in the phonon temperature region.

A solution of Egs. (3)—(5) in the (w,k ) representation (see Refs. 6 and 7) gives a
linear response p' = p — p, to the external field U (w,k):

plw, k) =-malw, k) Ulw, k), (6)
where the generalized susceptibility is

1 -(p=13)
alw, k) = — . (7)

w (s _1)2-(,, 11)

Here

1 = fZ(w,k:P)dP,

I, —F(:v )Z(w, k, p) dps
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v

de 2 2—-——"2 r
v==— = c + 3Cyp°, P, =45Ti365,

where p, is the phonon part of the normal density of a liquid. Thus, the structure
factor is determined by Egs. (2), (6), and (7). In the neighborhood of the resonances
= + ck, assuming that 3|p|T%c ™ *»(wr)~", we have

(w, k) T r 8
75 T me? (w3 ThEPR LT )
~ 3cp A c?

c = ¢ In ’
4p yl T2
3rwp, A oy,
4p
T = )
AT?
y<ﬂ

2 c3plyle®® ?

9 2
A=<1+‘°— °).
c dp

The value of I" determines the attenuation of sound in the high-frequency mode and
the time 7 in expression (9) for y <O represents the time of the four-phonon collisions
7'~ T7 (see Ref. 7).

A result analogous to Eq. (7) was recently obtained® by using the equations for the
correlation functions. However, an elimination® in Eq. (7) of the resonance part, which
is proportional to p,, is entirely arbitrary. The use of the obtained resuits (see Ref. 8)
for T> T, also has not been justified, since we go in this case outside the limits of the
collisionless region and enter a region in which hydrodynamics can be used (because w
<T/#tict ' for T>T,, where the resonance part is

Ty

{ ,If = s
olw, &) me % (m—ck)anI‘H2

(10)
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where ¢ is the isothermal velocity of sound and I'y, is the hydrodynamic attenuation
factor of sound.’ Thus, we can see from Eq. (8) that the intensity of the resonance part
of a{w,k ), which is 7T /mc?, does not contain the p,(T')/p factor, as predicted in Ref. 2.

The experimental result (1), however, can be explained, in our opinion, by the fact
that, whereas o{w,k ) for @ > T# varies greatly with the temperature as a result of
transition of the A point, the integral intensity of this quantity—the statistical struc-
ture factor’

+oo d
(k)= [ o(w k) 2:’ (11)

is almost independent of the temperature.” Of course, it is assumed that the main
contribution to the integral (11) comes from the frequencies @ > T /4%, so that the
—fick \ — |

T /mc* factor in Eq. (8) becomes fik l—e T ~— A small variation of the
me me

density-density statistical correlation function ok ) with the temperature is attributable
to a small fraction of “He atoms that precipitate into the condensate Saik }/a{k }~ny/n.
The proportionality of the resonance part of the scattering intensity of the superfluid
component’s density can be trivially determined from the temperature independence
of olk):

+oo Pn d T
/ U(m,k)-'—p-a,,(w, k) 2: ~ Psp( )U(k)- (12)

In conclusion, I would like to take this opportunity to thank G. E. Volovik and L.
L. Pitaevskii for useful discussions.
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