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A method is proposed for determining the relaxation times of isolated groups of
current carriers in a simultaneous measurement of the amplitudes of quantum
oscillations of the velocity and damping of sound in a metal. The relaxation times of
holes in the third (r, = 2.5 X 107 '? sec) energy band and of electrons in the sixth
(r, = 4X 107 '* sec) energy band of tin were determined.

PACS numbers: 72.55. + s, 72.15.Lh
The interaction of sound waves with the conduction electrons in metals in a
magnetic field can be deduced, in particular, from the quantum oscillations of the

damping and velocity of sound."? The amplitudes of there quantum oscillations are
generally related by Kramers-Kronig-type relations, but in the low-frequency region
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investigated in this paper, they are related by a simpler relation that includes the
relaxation time of the corresponding group of current carriers. Simultaneous measure-
ments of the amplitudes of the quantum oscillations of the velocity and damping of
sound make it possible to propose a method for determining the relaxation times 7; of
the isolated groups of current carriers groups in a metal.!?

THEORY

The quantum oscillations of the sound velocity and damping in a metal can be
described by the polarization operator Il(w,q), whose general expression is given in
Ref. 2. The following relations can be written for the longitudinal sound propagating
at right angles to the magnetic field qLH:

w=m°(q') V1+ Mo, 9,

N=[e,,~./Q]_ o J2(qR,_ ) al
H(w,(])=—2¢""""" p3 s - ' (1)
€ n=P = -0 (xn+xn_a') (aQ-w+iv)

where ¢ is a dimensionless coupling constant of the electron-phonon interaction, €, is
the Fermi energy, £2 is the cyclotron frequency,  is the sound frequency, v = 7' is

the electron collision frequency, J,(x) is the nth Bessel function, R,

= [(2n + I)LH] 1/2 is the orbit radius of the electron in the nth Landau level, and x,,
e

2 . L . .
= [1 —(n+ 5)_]” 2 is the z projection of the dimensionless electron momentum at
€r

the Fermi level. We have assumed in this discussion that the current carriers obey the

isotropic dispersion law. If the arbitrary spectrum is taken into account, then we must
multiply the result by a numerical coefficient of the order of unity.

In the investigated region of low frequencies wr<€1 and strong magnetic fields
gR «1, the small values of @ in Eq. (1) are important. We expand the denominator in
Eq. {1) in small a, after which the resulting summation over a can be calculated
exactly. As a result, we obtain

2 92
n(w,q>=__f_ _‘L_.<__>2L. 2

2m{w - iv) epl ™ <3
n

Using the Poisson summation formula in Eq. (2), we obtain

‘I2 1 0\ = <Nn s2njn
o
n(m, q) =<_____ 1-‘ ——<——-> 2 f __C_._é.__]_dn . (3)
2m{w - i v) 2 \¢p j=1lo %
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FIG. 1. Quantum oscillations of the longitudinal sound velocity and damping in a sample with n|{[100].
H||[001] and T=4.2 K.

Here, the first term corresponds to sound dispersion and damping without a magnetic
field* and the second term describes the quantum oscillations. Equation (3} is valid
when the condition w7, <1 is satisfied, where 7, is the Dinglovskii relation time,
which describes the width of the quantum oscillations.

A simple relation, which relates the real and the imaginary parts of Il(w,q), is
derived from Eq. (3). In terms of the relative damping Imll,,. = 4y/y and dispersion
Rell . = AS /S of the sound, this relation is written as follows:

(?) =_m,(ﬂ> . @

asc Yy o

We note that another relation, which relates the amplitudes of the quantum oscil-
lations of the sound velocity and damping in this low frequency region, was obtained
in Ref. 5 on the basis of the Rodriguez theory.' This formula, however, proved to be
incorrect-specifically, it gives an oscillation amplitude of the sound velocity that is
larger than the damping oscillations.

EXPERIMENT

An “acoustic” measuring oscillator was assembled by us for simultaneously mea-
suring the amplitudes of the quantum oscillations of the sound velocity and damping.
The operation of this instrument is based on a contactless excitation of standing sound
waves in a metal plate in a magnetic field.® A buildup of standing sound waves within
the plate is accompanied by the appearance of resonance characteristics in the frequen-
cy dependence of the surface impedance of the metal. The frequency and amplitude of
the resonance characteristics and hence the frequency and amplitude of the oscillation
of the proposed instrument are determined by the sound velocity and damping in the
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metal. The variation of these parameters AS /S and 4y/y was measured in the experi-
ment. The measurement procedure is described elsewhere.’

The amplitudes of the quantum oscillations of the velocity and damping of longi-
tudinal sound were measured at a frequency of 1.7 MHz in a tin single crystal in the
form of a disk with a diameter of 1.8 cm and a thickness of 0.1 cm. The normal n to
the plane of the disk coincided with the second-order symmetry axis [100], and the
sample quality was characterized by the resistance ratio p;px /ps2x = 8X 10%. The
measurements were performed at 7 = 4.2 K in a magnetic field parallel to the plane of
the disk.

Figure 1 shows the experimental traces of the quantum oscillations of the sound
velocity and damping in tin for H||[001]. The frequencies of the observed oscillations
correspond to the extremal cross sections of §; and §3.® The amplitudes of the quan-
tum oscillations of the sound velocity and damping from the &} cross section in a field
H =70 kOQe are, respectively, (45 /S),,. = 3.7X10™* and (4y/%),,. = 0.15. Accord-
ing to Eq. (4), this defines the relaxation time 7, = 2.5 107! sec in the third hole
band. At H|[[010] the oscillations from the 7, cross section had the maximum ampli-
tude; they were equal to, (4S5 /S),,. = 4.9X 107* and (47/7),,. = 0.12, respectively, in
a field H = 70 kQe. This determines the relaxation time 7, = 4 X 107 '? sec in the sixth
electron band of tin. The measurement accuracy of the quantum-oscillation ampli-
tudes of sound velocity and damping is 10%.

YThe paper of Korolyuk er al.* is devoted to determination of the electron relaxation time from the
nonresonance magnetoacoustic measurements. In this paper, however, the authors measured the relaxation
time averaged over all groups of carriers.
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