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An exact general solution for equilibrium, spherically symmetric configurations is
obtained within the context of the general theory of relativity. The dependence of
the gravitational and thermal energies on the radius of a star is plotted. The
luminosity of stars of the main sequence is discussed.

PACS nﬁmbers:95.30.Sf,97.20. —w, 97.10.Ri, 97.10.Cv

Spherically symmetric equilibrium configurations are examined within the con-
text of Einstein’s general theory of relativity.’

1. EQUATIONS OF MOTION AND ENERGY RELATIONS

In the case of spherical symmetry when the space-time metric is determined by
the expression ds® = c?dt * — a’dr® — r* (d6* + sin’@ dg ?), the equations of motion are
represented in the form®
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where the prime and the dot denote partial derivatives with respect to r and ¢,

W=1+e+p/p I'= J 1 —V?, V=a#/c, p and p are density and pressure in the
rest frame, € is the internal energy per unit rest mass, and the velocity of light c—1 as
r— oo. Equations (1) comprise a system of four equations for five unknown functions c,
a, p, p, and V. Introducing the entropy S, according to the thermodynamic identity
T7dS = dW — dp/p, we obtain the following expression as a corollary of (1):
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The first equation in (2) determines the gravitational potential G and the total
energy density p*, the second equation describes the law of conservation of the total
energy, and the third equation determines the masses and the entropies. The last
equation also holds for arbitrary metric ds* = g, dx'dx* when it is written in the form

. T . . i

If the energy output ¢ due to burning of the rest mass is known, then this equation can
a ; pT .dS
- —V —gpu'=q and ~—u'— =
v —g ax W dx
and we obtain a total system of equations.

be broken down into two equations

b

The total energy of a star M deduced from its gravitational field by an outside
observer and the energy locked in the rest mass M,, respectively, are

R
M=4nfp*r2dr, M, =4Wf.a_?_,-2dr_ ()
0 o I
The energy M can be represented by the sum M =M, + M; + M, + My, where the

gravitational energy M, thermal energy M, and kinetic energy M, are determined
by the expressions

R R
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The energy emission of a source is evidently accompanied by a reduction of its
mass M. M can vary by releasing (or absorbing) energy in nuclear and chemical reac-
tions, which is described by the variation of M,, and also because of variation of the
partial energies M, M, and M.

The external gravitational field is described by Schwarzschild’s solution®
cz=1-=rg/r, a2=»(1—rg/r)'l, rgaKM/‘ln. (5)
2. EQUILIBRIUM CONFIGURATIONS

As V—0 Egs. (1) reduce to a system of three equations for four unknown func-
tions ¢, a, p, and p* = pe + p. The gravitational and thermal energies of the equilibri-
um configurations are expressed by the integrals
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where 4 = 1 — 1/a® = 2rG’ = km/4xwr and m = 4r | p*r’dr is the moving mass.
0

(a) If we set p* = const as an additional equation, we shall obtain Schwarzschild’s
intrinsic solution
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which satisfies the boundary condition p = O when r = R = 1. This solution, however,
has a discontinuity p at r==R. The Tolman model solutions also have analogous
shortcomings as well as infinities at » = 0.’

Explicit expressions for M;and M, can be obtained for the solution of Eq. (7)

Me 1 3 b-ks My 3 k[5 12k -1 4 Y INEY
M T2 ¥ M y-1 s2\2 T 2ks ¢~s v -
dk+1 1-%
% arctan . (8)
3k-11+4%

Here s=sing = v/'r,, k =cos¢ > 1/3, and pe = p/(v — 1).

(b} For a specified dependence p = p(p), the problem reduces to a solution of the
system of equations

cp* kprp/e?
o :_rP2+P IP_HI‘ 7(pr)'=Kp*r2, (9)

for a relativistic degeneracy p* = p + 3p, p = po(T/To), p = po(T /T,,)%, and y = 4/3.

(c) The general solution, which depends on one arbitrary function, can be ob-
tained by assuming that the c{x) function, where x = r?, is specified. The equilibrium
problem in this case reduces to the linear equation foru =1 -1 Ja?,
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whose solution is
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where u(R %) = r,/R. The requirement that ¢ and ¢’ must be continuous in matching
them with the external solution (5) leads to the condition p(R ?) = 0 and the continuity

of ¢ leads to the condition p*(R ?) = 0. If ¢ are known and a = 1/,/1 —p, then the
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values of p and p* can be determined by using the formulas
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If c’(x) is defined as a relation of linear functions and the boundary conditions for
the continuity of ¢, ¢’, and ¢” are satisfied for » = R = 1, then we obtain a particular

solution ¢2 =1 — rgﬁ—-:_%\:—' which depends only on the parameter r,
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where z = (14 3x)7!, 4 = (2-rp)/32 [(4+n)/(4-n)]",n* =8r,/(3-r,). This ex-
pression is meaningless for 7, > 1/3 as ¢(0)—0. The F (z) integral can easily be approxi-
mately calculated for 7, <1 and (1/3 — r,)<1, and it is expressed by the elementary
functions for r, = 1/11.

Figure 1 shows the dependence of M, M, and My = M; + M, on R /r, for
the equilibrium configuration (13) at pe = p/(y —~ 1), y = 4/3, and y = 5/3. The bound-
ary value of R /r, is determined by the condition ¢ (0)~0; the infinite energy barrier
prevents further decrease of R /r,. Figure 2 shows the M; (R /r,) plot constructed by
means of a numerical integration of Egs. (9) for y = 4/3. The ambiguity is attributable
to the fact that the radiation pressure, which gives rise to an additional parameter
a = po/po, is taken into account. The My function was obtained by Fowler for small

FIG. 1.
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FIG. 2.

r,/R .* The characteristic feature of the behavior of the energy M is its increase with
decreasing R, which leads to a large release of the rest energy M,

3. LUMINOSITY OF STARS

To determine the luminosity L = 7R *0T$, we must know the effective tempera-
ture T, which is apparently determined by the optical thickness of the star’s atmo-
sphere that coincides in order of magnitude with the barometric length / = kT,/m g,
where g = GM /R * and G is the Newtonian constant. Hence the opacity of the atmo-
sphere is k, = GM /p,R *. We shall limit ourselves to nonrelativistic Emden® equilib-
ria p = polo/polVeyo = const, which have a constant supply of convective stability if
Vo<, where po~M /R and T,~M /R.

If k, ~p*/T* v=const, and 4 = const, then from the equilibrium conditions
T, ~M*/R%“, where a=(v+ 1)/(yo-1)-v,b=(»+1)/(yo-1)-3v-1, and
c={w+ 1)/(yo-1)-A+1. We shall require that the luminosity L must depend only
on the mass M and must be independent of the radius R, as is the case for the main
sequence stars L ~M ~. Thus the parameters y, and N can be expressed in terms of v
and 1:Yo=14+(1 4+ »)/(3+6v-0),N=2(3+5y-1)/(2+3v-N).

If we use the approximation formula «, ~(p/7>°)% then we shall obtain
Yo = 1.33, 1.35, and 1.36 and N = 3, 4.3, and 6, respectively, fora =0, 0.5, and 1. It
follows from this that the luminosity of the main-sequence stars is well described by
the Emden equilibrium configuration with 7, = 1.34, which does not have any param-
eters, except M and R. We note that the Emden equilibrium withy, = 4/3, which was
proposed by Eddington on the basis of other premises, was considered a long time the
standard for stars such as the sun.
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