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In the case of strong coupling of f-d excitons with the lattice, their dipole-dipo

le

interaction with each other produces a valence jump; otherwise, it smooths out

the valence transition.

PACS numbers: 71.25.Tn

As is known, the intermediate-valence states (IVS) in Sm compounds appear as a
result of crossing of the 4f® level in which the 6s-5d-type conduction band (¢ band)
is initially empty. There has recently been convincing experimental’>? and theore-
tical>* evidence of strong, excitonic correlation between the f holes and the ¢ elec-
trons in the IVS. A valence transition from the semiconducting (8) phase of Sm
chalcogenides to the IVS can, in principle, be an ordinary condensation or a Bose
condensation of f-d excitons. Both types of transitions were discussed many times
in connection with Mott excitons in semiconductors (see Ref. 5 and the references
cited therein). In this case, however, a similarity between the absorption spectra of
B phases in the excitonic region and the spectra of isolated Sm?* ions* indicates that
the exciton radius is small. This is consistent with a high ("~ 0.6 per site) exciton den-
sity in the IVS. The band structure of dipole-active Frenkel excitons is determined
primarily by their dipole-dipole interaction with each other. If the delocalization of
c electrons (according to the estimates,? only "~ 10% of the delocalized c states lie
below the 41 5d excitonic level) is completely disregarded, we can write the Hamil-
tonian of the system interacting f-d excitons in the form

H=3[E,, ()(1-b}b,)+E, (X)btb, ]

+ TW (X (h; b7 )b + b7 ), )
ij ¢ ¢ b J /

where b; is the Pauli operator which annihilates the f-d exciton at the lattice site i
(for simplicity, we disregard here the exciton polarization; see, however, the foot-
note?); Eo; and E,; are the energies of the 4f° and 41> Sd levels, respectively, of an
Sm?* ion; W is the matrix element of the dipole-dipole interaction and X is a set of
phonon coordinates. At W=0 the interaction of excitons with uniform deformations
gives rise to a spasmodic valence transition with a variation of the number of bf b; by
a unity, whereas the local polaron effects, which are important because of strong ex-
citon-lattice interaction in the compounds under consideration, smooth out the
transition (Ref. 6)."> On the other hand, if only the uniform deformations are taken
into account, then the inclusion of the dipole-dipole interaction will also smooth out
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FIG. 1. 4% and 41 5d levels of an Sm*” jon; x
4£85d is the normal coordinate of the totally sym-
metric oscillations of chalcogen ions.

4r9¢

the transition and stabilize the coherent IVS with ¢»)#0.2 The result discussed be-
low shows that allowance for the local polaron effects fundamentally changes the
conclusions®: the dipole-dipole interaction primarily accelerates the transition and
necessarily leads to a first-order transition such as the ordinary (not Bose-Einstein)
exciton condensation at low temperatures.

To select the effects of interest to us, we shall examine only the local deforma-
tions, which correspond to totally symmetric oscillations of chalcogen ions relative
to the Sm ions, and describe them in terms of the Einstein model (the role of the in-
teraction between the modes is briefly mentioned below). Thus, £g; = £4(x;, P) and
Ey;=¢,(x;, P) in Eq. (1), where £, and €, are the 4f% and 4f5 5d levels (Fig. 1), x,
is the corresponding normal coordinate, and P is the pressure. The vertical gap be-
tween the ground state of the f6(f> 5d) level and the f° d(f®) level is denoted by
Ao(A1); A; 2 Ag because of anharmonism of the highly excited, vibrational states.
At W=0 the system of clothed excitons is characterized by wave functions of the

type
HI(L-N) ¢ () +N, ¢, (x, )bt 1] 0>, @)

i

where V; is the number of clothed excitons having the values of O and 1, ¢¢ and ¢,
are the wave functions of the ground states of 4f® and 4f5 5d levels, and |0) is a state
without excitons; the interaction with the lattice in this case shifts the transition
point without changing its nature. We shall extimate the correction E¢!? for the en-
ergy of state (2) due to dipole-dipole interaction. Assuming that the vibrational fre-
quency w<< Aq/h, we obtain, as usual, a polaron band narrowing®: the matrix
element of the dipole moment for the nonvertical transition between the main vibra-
tional states of both levels is proportional to the small multiplier e™7, where

g ™ Qo /tuw is the average number of phonons produced as a result of the vertical
transition. If

W << A << Ae?, ©)

where A is the exact difference in energies of the ground states of the levels, then the
dipole-dipole interaction can be calculated from perturbation theory and E!) is de-
termined primarily by the virtual vertical transitions. In the first nonvanishing order,
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where A and B are unessential constants,
2
v (A, -A)
4 2A°A1(A°+A1)

W, 1? (5)

is the effective interaction of excitons. Since V;; <0, the nonuniform systems with
Sm?* ions in different states breaks up into two uniform phases at zero temperature.
The physical advantage of separation is the fact that a reduction of energy due to ex-
change of virtual photons between two Sm?* ions depends on the state of these ions
because of the difference in the energy denominators?? (2 Ag, 2 Ay, Ao + A, for the
f6 _f6 ’de_de, andf6 _de pairs).

By comparing the energy of the phases with V;=0 and ¥;=1, we can determine
the point of the first-order phase transition between them

A=-2V.,NW2/A ’
. ij °
t

Thus, the inequality (3) holds at the transition point if
e~9<< W/ A <<1. (6)

The investigated simple model describes the spasmodic transition of all the Sm?*
ions from the 1 state to the f3d state. To understand the SmS transition to the IVS
qualitatively, in addition to the long-range (" 1/R®) attraction (5), we must take into
account the short-range repulsion of excitons due to interaction of the local vibra-
tional modes.>® An effective interaction of excitons can also be produced by a part-
ial delocalization of ¢ electrons; moreover, a direct exchange of d electrons facilitates
exciton attraction and an s-d hybridization facilitates their repulsion.!®

A relatively high critical temperature T, " 10> K of the transition to SmS (Ref.
11), as compared with the ordinary van der Waals systems, is attributable to the small
A 0.8 eV compared with the typical energy of the first excited state of an isolated
atom. A, increases as a result of transition from SmS to SmSe and later to SmTe and
the dipole-dipole interaction weakens because of an increase of the lattice constant
and of the dielectric susceptibility of anions. This accounts for the absence of a
transition to SmSe and SmTe at 7= 300 K (they have not been investigated at low
temperature). We note that at T>>7%w the e factor in Eq. (3) must be substituted
for e20/T_ Since Ay/T, > 5, the inequality e20/T <<W/A, << 1, which is analo-
gous to (6) and which enables us to use the perturbation theory and disregard the
virtual nonvertical transitions, holds for intermediate W in the region T<T,.

The author thanks L. V. Keldysh, N. M. Kuznetsov, and D. L. Khomskii for a use-
ful discussion.

Uf the anharmonism is taken into account, then the interaction with the uniform deformations
can also smear out the transition.”
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2)The same result can be obtained for purely parabolic levels if the polarization of the excitonic
state is qualitatively taken into account.
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