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It is shown that low frequency, electromagnetic waves with a frequency lower
than that of the plasma frequency can propagate at low temperatures in metals
in which the electrical conductivity and thermoelectric current are produced by
electrons of several bands, if the metal has a temperature gradient. We call these
waves thermoelectromagnetic waves.

PACS numbers: 72.15.Jf

It was shown in Ref. I that if a metal has a strong magnetic field, then the elec-
tromagnetic wave incident on it can pass through the metal, even if its frequency is
lower than the plasma frequency w),.

This paper is devoted to another case in which weakly damped electromagnetic
waves with a frequency w<wp can occur in a metal. These are called thermoelectro-
magnetic waves, i.e., electromagnetic waves occurring in the presence of a tempera-
ture gradient ¥ 7.23 We show that at sufficiently low temperatures 3 T gives rise to
the propagation of weakly damped waves with a frequency w<w, in metals in
which the electrical conductivity and thermoelectric current are produced by elec-
trons in several energy bands. Such waves were recently detected in bismuth by
Kopylov.*-*®

1. Thermoelectric field produced as a result of increasing the number of elec-
trons in several bands by phonons. The kinetic equation in the collision-frequency v
approximation has the form

de 9f, d 9, , -
dp Or T Tor Jp +pr~fp o

—

where f,,(dp) is the distribution function, which is normalized to the concentration n
of electrons, 5 =fp(e - u)/T=fp(¥) is the equilibrium distribution function, y is the
chemical potential, T is the temperature in energy units, and £(p) is the electron
energy such that 8€/op =v (velocity). If VT is present and if the “phonon wind” is
taken into account, then the equation in the linear approximation will have the form

LTV AN I
i Y: §+'b—T—+>( '8'0735 + vfi(p)=0, 1)

where the term (- E; T)describes a force produced by the phonon wind, x(¢) is a
dimensionless value that characterizes the drag (mutual drag), and F,, is the thermo-
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electric field. If the values of the order of T/u are disregarded, then eE, = -« _V>T,
where a=x(u). x(1)=~1 for metals. If an electromagnetic wave is propagated in the
metal, then the following equation must be solved in order to determine the alternat-
ing current proportional to V T

) L € afl(P)
<—67=er +V>fp(t)=$[VB]-_8v———, )]

where B is the magnetic field of the wave. We shall show that «w <<v for thermo-
electromagnetic waves and k « v<<v for a number of metals. We shall, therefore, dis-
regard w and, for simplicity, also k - v. Hence, the alternating current j~ [BV T is of
the order of (T/u)?; if T/u is disregarded, then j=0. The situation changes if the elec-
trons in several energy bands are taken into account in the electrical conductivity and
in the thermoelectric current. For simplicity, we analyze two bands a and b. In this
case,

e er <1 afo, 1 af;,,> *T(X" g x,,af;b\ﬂ
=—| e —_ — +V 4 —
VP =T R\ e T, Tog, ve 0f, v, 3&/]

3)
hence, ¢E, = -a,,,,ﬁ’ T.
X gngmpvp + Xp npm v,
a,, = . )

Rg MpVy + "bmaVa

Substituting Eq. (3) in the equation for £ and f functions, which are analogous to
Eq. (2), we can see that one part of the current j that is proportional to VT has to
form

i =T)[BVT], N = Cab(xa—xb)(mava"mbvb) ,
' &)

62 1 nanb
C . = — .
b
¢ € MemyvaVy FaMmpVp + BpMaYa

This current generally does not have asmall T/u. The Nernst-Ettingshausen coeffi-
cient 1 can be both positive and negative

2. Frequencies, wave vectors, and phase velocities of weakly damped, thermo-
electromagnetic waves. Substituting the total current

j = ok +1,[B(7"T], o =0, +0,
in the Maxwell equation, we obtain the equation
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[ ko? ~c2k” < 4mive + 47icnkVT)1E==4ricpk (EVT), (6)

where k is the dielectric constant of the lattice. If (E?T) #0, then the waves will be
longitudinal. If, however, (EV T)=0, then they will be transverse waves and the dis-
persion relation for them will have the form

c2k? ‘4ﬂiCT](k€T) ~4nive - kw? = 0. @)
Hence, k is
2iny T 1
k:k'+i,k"=:-—2—7—’—y— t-—-—[4niwa-—(2n?7]v7)2]l/2. (®)
c [

The waves will be weakly damped if k' <<k'; a solution with a minus sign in front
of the radical and the inequality

o << w =77(qu)2/0 (9)

max

must be used in this case. If W= Ywmax, ¥ <<1, then k"' [k’ =y <<1, so that the
waves are weakly damped. For these waves,

k’ b k*
T = y ]
eyl max (10)
L’ - - wmaxa____'”)VT.
max

chT c

Therefore, the weakly damped waves are propagated in the direction (-v T) when
71>0 and in the direction (+V T) when n<0. Their phase velocity is

u= o /k =cppl/o, ¢8))

i.e., it is independent of the frequency. The other solution, which corresponds to the
plus sign in front of the radical in Eq. (8), gives strongly damped waves that propa-
gate in the direction (+VT) when n=0. For them k"/k"=1/y>>1. The estimates
in Sec. 4 show that the relation w/v ignored by us is << w/wWpqax; we used this rela-
tion to expand in a series the expression for &, so that the expansion is valid.

3. Influence of spatial dispersion. The o and n coefficients receive the same ad-
ditional multiplier if the spatial dispersion is taken into account

- — ..-.._. .___14_._._—

4 a \

3 2 i 1 1+ ia
) In (12)

-ia

where a = kv/v=kl; 1 is the length of the free path of electrons, which for simplicity,
we assume to be the same in both bands. At a<<<1 the expression (12) reduces to
the multiplier (1 -% k*I?). Substituting it in Eq. (7) and replacing k by k + 8k, we
find that
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(13)

for weakly damped waves when 7>0. The input values are everywhere assumed to
be absolute in these expressions. At <0 the signs in front of k%’ and 8"’ are re-
versed. Since, according to Sec. 2, the waves in which &' <0 [i.e., the waves that pro-
pagate in the direction (—3 T)] are weakly damped when 1>>0, and the waves with
k' >0 are weakly damped when 1 <0, we can see from the given expressions (13)
that the ratio k'/w decreases with increasing frequency in both cases, i.e., the phase
velocity of the waves increases. The damping of waves also increases in both cases,
although slower than the phase velocity. The waves are strongly damped in the op-
posite, limiting case a>> 1.

4. Estimates and comparison with experiment at T=4.2 K (x grad T~
4 grad - cm™'). Since v~4 X 10" for Cu,® Egs. (9), (10), and (11) give the values
Wmax 6 X 102, Kpar 102, and u~6.

Cd:v=10" o _, ~10%k . =~ 3X10% u = 30.

max
Al tv=24X10° 7, o .~ 1.6 X10% k = 1.2X10% u = 1.3X10°.
Mot v= 10° ® o _  =2X10% k, . =~4X10% u=5X102%
Bitv= 10"-10° ° o . =5-104~5-107k . =20-10°
u~~103-105

At W/ Wmax =k/kmax 0.1 these waves are relatively weakly damped. The spatial
dispersion can lead to a noticeable deviation from the relation k ~ w for Al, Mo, and
Bi.

The theory discussed by us is in good agreement with the results of the experi-
ments of Kopylov®* for bismuth. His results also lead to a one-directional propaga-
tion of the thermoelectromagnetic waves, to a weak frequency dependence of their
phase velocity at low frequencies, and to an increase of the phase velocity at higher
frequencies. The wavelengths in bismuth determined by us also agree with the experi-
mental data to within an order of magnitude.

Our theory makes it possible to estimate the drag constant x from the experimen-
tal data for the Nernst-Ettinghausen coefficient 7.
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