Asymmetry of the cross section of the reaction $\gamma n \rightarrow \pi^- p$ induced by linearly polarized photons with energies 0.8–1.75 GeV

- V. V. Adamyan, G. G. Akopyan, G. A. Vartapetyan, P. I. Galumyan,
- V. O. Grabskii, V. V. Karapetyan, G. V. Karapetyan, and V. K. Oktanyan

(Submitted 9 September 1985) Pis'ma Zh. Eksp. Teor. Fiz. 42, No. 8, 345–347 (25 October 1985)

The asymmetry of the cross section Σ of the reaction $\gamma n \rightarrow \pi^- p$ induced by linearly polarized photons in the energy range 0.8–1.75 GeV and at c.m. angles of 45–90° is measured. The measurement results are consistent with the predictions of the existing phenomenological analyses.

Theoretical studies of new hadron models, which were motivated by the development of quantum chromodynamics, ¹⁻⁴ have recently appeared in the literature. In these studies the role of gluon degrees of freedom in the nucleon-resonance spectroscopy has been discussed. In particular, Barnes and Close⁴ used the bag model to estimate the constants of the radiative decay $N * \rightarrow N_{\gamma}$ for hermaphrodites, i.e., resonances having a structure of the type qqq + g. Using as an example the resonance $P_{11}(1.710)$, which is a possible low-lying candidate, it was shown that the radiative-decay constants and the isotopic properties of the radiative-decay amplitudes of these states may differ markedly from those predicted by "conventional" quark models.⁵

Blankleider and Walker⁶ have developed a qualitatively different approach in determining the structure of the low-lying nucleon resonances. They showed by means of a potential approach that certain resonances such as $P_{11}(1.470)$, $D_{13}(1.520)$, $D_{15}(1.675)$, and $S_{31}(1.620)$ can be linked to the threshold effects associated with the creation of the system $[\pi + \Delta(1.232)]$ in the intermediate state.

A quantitative test of various theoretical predictions of the photoproduction processes $\gamma N \rightarrow \pi N$ requires that the radiation constants found from the partial-wave analyses of the experimental data be very accurate and reliable.

The current situation, however, is unsatisfactory on the whole, primarily for "weak" resonances, which have a relatively small radiation constant or an elastic modulus, and for neutral resonances with an isospin 1/2. This circumstance is attributable largely to a dearth of experimental data, particularly on the neutron-induced photoproduction of π mesons.

In this letter we present systematic data on the asymmetry of the cross section Σ for the reaction $\gamma n \rightarrow \pi^- p$ induced by linearly polarized photons at energies $E_{\gamma} = 0.85-1.75$ GeV and at angles $\theta_{\pi}^{\text{c.m.}} = 45-90^{\circ}$. The angular dependence of the asymmetry near the excitation energy of the $P_{11}(1.710)$ resonance is measured.

The experiment was carried out at the Erevan Physics Institute, using a linearly polarized photon beam with electron energies $E_e=3.5$ –4.5 GeV, a two-beam spectrometer, and a liquid deuterium target. The photon beam was monitored with a

Wilson γ detector and the parameters of the quasimonochromatic bremsstrahlung spectrum were controlled and measured with a nine-channel pair spectrometer. The π^- mesons were detected by a magnetic spectrometer with an angular acceptance of 3.5 msr and a momentum acceptance of 12%. The recoil protons were detected with a range spectrometer with an angular acceptance of about 15 msr.

The energy and angular resolutions of the apparatus were (4-6)% and $1-2^\circ$, respectively, in the kinematic region studied. The background from the many-particle processes caused by the high-energy part of the bremsstrahlung spectrum was determined in the measurements with "disrupted" kinematics and with an amorphous emission spectrum. This background was estimated to be no greater than 5%. The asymmetry of the cross section was determined from the yields of the reaction, N_1 and N_{\parallel} , for photons polarized at right angles to the reaction plane and parallel to it:

$$\Sigma = \frac{1}{P_{\gamma}} \ \frac{N_{\perp} - N_{\parallel}}{N_{\perp} + N_{\parallel}} \ ,$$

where P_{ν} is the effective photon polarization in the range of 55 to 75%.

The results of determining the asymmetry of the cross section Σ for the reaction $\gamma n \rightarrow \pi^- p$ are shown in Fig. 1 as an energy dependence for the angles $\theta_{\pi}^{\text{c.m.}} = 45$, 60, 75, and 90° and in Fig. 2 as an angular dependence at an energy $E_{\gamma} = 1.05$ GeV. The curves in Figs. 1 and 2 are the predictions of the phenomenological analyses of Refs.

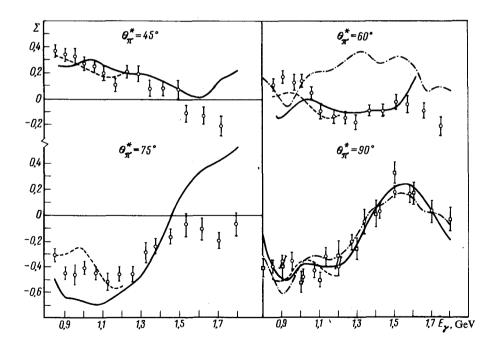


FIG. 1. Energy dependence of the asymmetry of the cross section Σ for the angles $\theta_{\pi}^{\text{c.m.}} = 45$, 60, 75, and 90°. O—The present study; —the data of Ref. 12. The curves represent the results of phenomenological analyses. (···)—Ref. 9; (-)—Ref. 10; (-···)—Ref. 11.

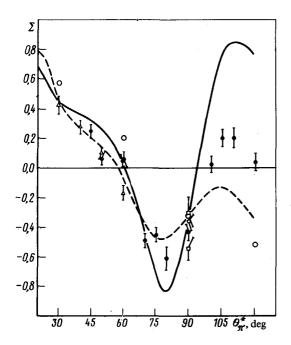


FIG. 2. Angular dependence of the asymmetry of the cross section Σ at $E_{\gamma} = 1.05$ GeV. —Our results; —the results of Ref. 12; \triangle —the results of Ref. 13; O—the results of phenomenological analysis of Ref. 11. Curves—The results of phenomenological analysis: (\cdots) —Ref. 9; (-)—Ref. 10.

9-11. As can be seen in Fig. 1, the predictions of the analyses are largely unsatisfactory, particularly in the region of the fourth πN resonance, with the exception of $\theta_{\pi}^{\text{c.m.}} = 90^{\circ}$, where all analyses take into account the results of Ref. 12. This conclusion also pertains to the energy region near the excitation of the $P_{11}(1.710)$ resonance (Fig. 2), where the difference between the experimental data and the predictions of the phenomenological analyses is particularly large at angles $\theta_{\pi}^{\text{c.m.}} > 90^{\circ}$.

The data on the asymmetry of the cross section Σ of the reaction $\gamma n \rightarrow \pi^- p$ thus show that predictions of the phenomenological analyses of the reaction $\gamma N \rightarrow \pi N$ are incorrect. These incorrect predictions qualitatively change the information obtained from these analyses on the constants of the radiative decay of nucleon resonances.

Since the results of this study comprise a large part of the polarization data on the reaction $\gamma n \rightarrow \pi^- p$ at $E_{\gamma} > 0.8$ GeV, the incorporation of these data and also the data of the most recent studies of the processes $\gamma N \rightarrow \pi N$ will greatly improve the accuracy of the predictions in the region of resonances with a mass $M_R > 1.6$ GeV.

```
<sup>1</sup>H. J. Lipkin, Phys. Lett. 113B, 490 (1982).
```

²M. Chanowitz and S. Sharpe, LBL-14865, University of California, 1982.

³N. Isgur and J. Paton, Oxford University Report 7/85, 1983.

⁴T. Barnes and F. E. Close, Phys. Lett. 128B, 277 (1983).

⁵T. Kubota and K. Ohta, Phys. Lett. **65B**, 374 (1976).

⁶B. Blankleider and G. E. Walker, Phys. Lett. 152B, 281 (1985).

⁷F. V. Adamyan et al., Preprint EFI-722(37)-84.

⁸F. V. Adamyan et al., Preprint EFI-790(7)-85.

⁹W. J. Metcalf and R. L. Walker, Nucl. Phys. 76B, 253 (1974).

¹⁰I. M. Barbour et al., Nucl. Phys. **141B**, 253 (1978).

¹¹I. Arai and H. Fujii, Nucl. Phys. **194B**, 251 (1982).

¹²J. Alspector *et al.*, Phys. Rev. Lett. **28**, 1403 (1972).

Translated by S. J. Amoretty

¹³L. O. Abramyan et al., Yad. Fiz. 32, 133 (1980) [Sov. J. Nucl. Phys. 32, 69 (1980)].