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The residual conductivity of samples of small dimensions is highly sensitive to
small changes in the impurity potential. The conductivity of a film of finite
thickness changes, for example, when an impurity is moved a finite distance,
regardless of the film dimensions. This effect can be used to study extremely slow
diffusion of impurities. The magnetoresistance of a spin glass, produced as a result
of changing the way in which the exchange potential is produced in 2 magnetic
field, is considered. A possible link between this effect and the experiments carried
out by Webb er al.’ [Phys. Rev. B 30, 4048 (1984); Phys. Rev. Lett. 51, 2696
(1985) 1 is discussed.

1. The conductivity of small-diameter conductors fluctuates from one sample to
the next. These fluctuations were analyzed by Al’'tshuler' and Lee and Stone? under
conditions of weak localization. At 7= 0 the deviation of the conductance of the
sample from the mean value (G ) was found to be on the order of e*/# (irrespective of
its size or shape). The presence of these fluctuations makes the electrical conductivity
extremely sensitive to small changes in the random potential which scatters the con-
duction electrons. Suppose that this potential for some reason changes from u(r) to
u(r'). We will show that the correlation function F of the conductances before the
change (G) and after the change (G') is
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Here b, and b, are coefficients which depend on the shape of the sample, d is the
effective dimensionality with respect to the length L/, L is the dimension of the sample
in the direction of the current, / is the mean free path, and D is the diffusion coefficient
of electrons.

2. If the conductivity is determined by the scattering by a short-range impurity
potential, then a =N, /N,,,, where N,,, = VC,, is the total number of impurities in
the sample, and 8N,,, is the number of impurities that have changed their position. We
see that for 8N,,, ~1?aC,,, (C,, is the impurity concentration) the condition Dr,~L?
(which leads to |G — G'| ~¢*/#) is satisfied in a square film of finite thickness @ for
any value of L no matter how large. In other words, at 7= 0 and d =2 a change in
the position of only the impurity changes the conductivity by a finite value. In general,

the conductivity changes by a finite amount when 8N,,, is proportional to L4 2.

The high sensitivity of the conductance to a change in the position of the impuri-
ties makes it possible in principle to study the diffusion of impurities in metals (the
quantum diffusion of hydrogen, for example) at very low diffusion coefficients D,,,. If
the impurity jumps a distance r, over a scale time T,,,, the conductance will change by
the amount e?/#in atime ¢ ~ T, (I ?/L ?). This allows one to measure D,,, ~75/%/L *tin
a time 7. With 72 ~ 1071 ¢m?, /~107% cm, and L ~10~* cm it is possible to measure
D,, ~107" cm?/s in a time t~1 s.

3. If the sample has localized spins, then at low temperatures these spins will
either form a spin glass at T; > 7, T, or vanish due to the Kondo effect (T > T,
T).” Here Ty and T; are the Kondo temperature and the temperature for the transi-
tion to the spin glass, respectively. In either case, the magnetic field H has an effect on
the scattering potential which is caused by the exchange interaction of localized spins
with the conduction electron spins (we assume that no actual localized spin flips occur
as a result of scattering of conduction electrons by these spins).

The value L, in the spin glass arising from this change has the form, which is
analogous to (2),

D S (0)S
Lf=‘/ a2 ; ago(H)=1- LL)_EIL) , (2a)

oy (H) S(S +1)
where S is the localized spin, and 7 is the free flight time of an electron relative to the
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scattering by a localized spin. Substituting (2a) into (1), we find that
F(H) = (G(H)G(0)) — (G(H))(G(0)) decreases substantially with increasing H at
the level of H; which is determined from the condition ag; (H,) ~Dr,/#*. This means
that the conductance of a single sample oscillates randomly as a function of H with a
characteristic period H, and an amplitude on the order of ¢*/%. The functional depen-
dence F(H), which is associated with the orbital effects, was studied in Refs. 2-4 in
order to explain the experiments of Ref. 5. The oscillation amplitude turned out to be
the same (on the order of e?/#), while the characteristic period was determined from
the condition H,L *y ~®, = #ic/e. Here y = A /L ?, and 4 is the cross-sectional area of
the sample, whose plane is perpendicular to H. Thus, if gz ~ (guH /T )?, then

ﬂg(_D_Ts_l/ﬁ 17(Trs)ﬂ‘"l—, ‘ (3)
H \L* G's n

where p, is the Fermi momentum, and guH is the Zeeman splitting. From (3) we find
that any relationship between H, and H, is possible, and if the samples are sufficiently
dirty, H, < H,; i.e., the spin effects determine the functional dependence F(H) and
hence the irregular oscillations of G(H). From an analysis of these oscillations we can
experimentally determine the quantity o, (H), which is important in the physics of
spin glasses and which is very difficult to measure by other methods.

In the experiments of Ref. 5, the authors observed random oscillations of G(H),
which can in principle be explained in terms of both the orbital and spin effects.
However, the difference between G(H) and G( — H) observed in Ref. 5 cannot, by
virtue of the Onsager relations, be explained in terms of the orbital effects, and it
should be attributed entirely to the spins. We wish to emphasize that even if H, < H_,
in which case the functional dependence G(#) is determined primarily by the orbital
effects, the quantity G(H) — G( — H) is on the order of ¢’/# and varies only due to
the spin effects at the level H,. The orbital effects can also be separated from the spin
effects by analyzing the time evolution of a; (H, t) characteristic of spin glass and by
studying the dependence of the effect on the magnetic field direction, i.e., the quantity
7. In Kondo’s case, we have 7 ,~7, = 4T % /(guH)?. This situation also causes ran-
dom oscillations of G(H), but the relation G(H) = G( — H) remains in force.

4. Al’tshuler! and Lee and Stone” showed that the sum of the diagrams like those
in Fig. 1 must be calculated before the correlation function of the conductivities can be
calculated. Equation (1) can be obtained by substituting the impurity potential u(r)
into one electron loop in Fig. 1 and the impurity potential #'(r) into the other. Conse-
quently, (u*) or (u'?) appears in the electron propagators and the dashed line, which

FIG. 1.
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connects different loops, corresponds to {uu'). As a result, the sum of the ladder
diagrams (diffusion or Cooper poles) is equal to (Dg* + 77 ') ~*, which leads to (1) if
the same boundary conditions as those in Refs. 1 and 2 are used.

5. Another experimental case in which the fluctuation properties of small samples

are seen is a superconductor-normal metal-superconductor junction with L > D#/T,
in which the Josephson effect is negligible. Spivak and Khmel’nitskii® have shown that
(G ) in such a system oscillates as a function of the difference in phases ¢ of the
superconductors with a period 7. On the other hand, both the experimental study’ and
the theoretical studies>*® dealing with the Aharonov-Bohm effect in small samples
found that the unaveraged conductance oscillates with a “normal” (nonsuperconduct-
ing) period ®,. For the same reasons, F(¢) = {G(g)G(0)) — {G(¢))(G(0)) in the
system specified above. Accordingly, G(g) is also a periodic function @ with a period
27
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YInthe paramagnetic region the fluctuations are suppressed by spin scattering at D7, < L . The discussion of
this question in Ref. 1 contains an error.
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