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In a bounded two-dimensional electron gas the spectrum of edge
magnetoplasmons is a gap-free spectrum. In the quantum Hall effect regime, the
velocity of the “optical”’edge magnetoplasmons is quantized. In classical magnetic
fields, the results are in quantitative agreement with the experimental data for 2D
electrons bound to a liquid-helium surface.

Plasma oscillations in an unbounded 2D electron gas, in contrast with a 3D
electron gas, obey a gap-free dispersion law':
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where ¢ = (g,, ¢, is the wave vector of a 2D plasmon, n, and m is the density and the
effective mass of electrons, d is the thickness of the insulator in an MIS structure, and
€, and ¢; are the dielectric constants of the semiconductor and insulator. In a magnetic
field H perpendicular to the 2D layer, the magnetoplasmon spectrum acquires a gap
equal to the cyclotron frequency w, = eH /mc at q =0:
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Studies of the quantum Hall effect have established the importance of edge elec-
tronic states near the lateral boundaries of the inversion layer.” In this letter we will

556 0021-3640/85/230556-05$01.00 © 1986 American Institute of Physics 556



show that these edge states lead to the appearance of gap-free edge magnetoplasmons
which have recently been detected experimentally by Glattli et al.> and Mast et al.* We
will show that an exact solution of the edge magnetoplasmon spectrum given below
differs markedly from that obtained in Refs. 4 and 5 by means of uncontrollable
approximations.

Let us consider a semi-infinite inversion layer occupying a region x>0, z =0,
— 0 <y < + o in a magnetic field H = (0, 0, #). The insulator and semiconductor
occupy the regions 0 <z <d and z <0, respectively. We seek the edge magnetoplasmon
potential in the form

e,y 2,01, =¢lx) exp(viwtﬂqyy)v 3)

Ignoring the retardation, we find in the random-phase approximation a system of
integral equations for the determination of ¢, , (X) matrix elements of @ (x) from the
wave functions |N, X ), where N is the number of the Landau level Ey, (X), and X is the
x-center of the oscillator. In the limit of strong H, in which the matrix elements
(which are nondiagonal in N) of the electron-electron-interaction potential V', ,, can
be ignored, under the conditions w<w.,, |¢,|4 €1, and T'= 0 K we can greatly simplify
the system of equations:
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Here A is the magnetic length, #wgy = — A 20Ey (Xpy)/0X, Xpy is the root of the
equation E, (X) = E, and E is the Fermi level. Setting X = X,,,, =0 in (4), we find

for > |q,vpy| and for completely filled N Landau levels the spectrum of the “optical”
edge magnetoplasmons
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where K,(x) is the MacDonald function, and / is the cutoff length that will be calcu-
lated below. Let us consider the asymptotic behavior of (5) for |g,|/<1
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For N> 1, aside from the “optical” branch of the edge magnetoplasmons in (5), there
are also N — 1 ‘““acoustic” branches with phase velocities S;, where vy, <S; <vg ;-

The nondiagonal elements of ¥, form the cutoff length /. This can be shown by
analyzing the phenomenological model of the inversion layer which is characterized
by the local conductivity tensor o, ,4(r, @) = 0,45 (0)5(2)0(x), where a,f=x,y,
A(x) = 1 for x>0, and 8(x) = 0 for x <0. From a self-consistent system of equations
(equations of continuity, Poisson equations, constitutive equations) for potential (3)
we can find, in the same way as in Refs. 4 and 5, the integral equation

@) + [ k(x =x0) 9 (e0) dxo =1x), 9

where
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An equation that reduces to (9) was solved in Refs. 4 and 5 by means of an
uncontrollable approximation (by substituting an exponential kernel for a complex
kernel). Equation (9) can be solved exactly by the Wiener-Hopf method.® The Four-
ier transform of the function 8(x)@(x)
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can be expressed in terms of the function G _ (¢,) and in terms of the dielectric
constant €(q,w):
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Since the function ¢, (g,) has no singularities in the upper half-plane, its inverse
Fourier transform is ¢, (x) =¢@(x) for x>0 and ¢, (x) =0 for x <0. The value
¢, (x=0) =@(0)/2 can be simplified substantially. After a reduction to @(0), we
find an equation for the spectrum of “optical” edge magnetoplasmons

3
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The edge magnetoplasmon spectrum is comprised of two branches, » . and w_, in-
dexed by ¢, (Fig. 1). Let us consider the asymptotic behavior of w(g,) found after
substitution of (11) into (12). In the case |g, |d > 1, the right gap-free branch and the,
‘left branch with a gap can be written in the form
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FIG. 1. Spectrum of the edge magnetoplasmons (sol-
id line). Dot-dashed curve is the curve w®=w?
2 . .

+ [0.906Xw, (0, g,)]* which describes the edge
magnetoplasmon spectrum at H = 0; hatching de-
notes the continuous spectrum.
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The second expression for the cutoff length / is written in the Drude model. The
branch w_(g,) is included in the continuous spectrum w,,(4q,,q,) for g,
=go= — 1.315// and », = 1.905w, . In the cases |q,|d <1 and w<w, (€, =€, =€),
we have

29,0,

w+(qy)=— —q-yé—ﬂ In (4841 d/)), d>1, (16)
2no

w,(9,)=" :yqy Vil d<i. (17)

In the quantum Hall effect regime o, (0) is a multiple of e*/27fi and (13), (16), and
(17) imply quantization of the phase velocity of the right branch of the edge magneto-
plasmons; (13) and (16) are consistent with (7) and (8). Expression (17) was ob-
tained by Glattli et al® in the weak H approximation and is consistent with their
experimental data. The experimental data of Ref. 4 are in the region where (16)
applies; here o, is described by the Drude model. Figure 2 is a plot of the frequency of
the edge magnetoplasmon as a function of the mode number » = g, P /27 (conversion
of the experimental data of Ref. 4 for 2D electrons bound to a liquid-helium surface
for n, = 2X10% and 2.8 X 10® cm ™2 P = 8.56 cm is the perimeter of the sample). Only
the even modes are seen at small values of n, which Mast ef al.* attribute to the
particular features of the excitation of the edge magnetoplasmons (the arrow indicates
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the ambiguity in the determination of certain values of » for #>1). The dependence
w, (g,) is clearly a linear dependence, consistent with (16) but inconsistent with the
theory of Mast ez al* and Wu et al.> From a comparison with (16), where o,
= —en,c/H and d for a system with two equidistant shutters* is equal to one-half
the distance to the shutter, we can determine the cutoff length: /~ 1.4d. This distance
is not determined by expression (15) which is obtained within the limit of an abrupt
change in o,, at x =0 but instead by a much greater transition-layer thickness’
n.(x).

At w < w, the presence of edge magnetoplasmons with just one velocity direction
leads to a considerable suppression of the standard collisional mechanism of plasmon
damping, which accounts for the sharp narrowing (by an order of magnitude, accord-
ing to Mast ez al.*) of the absorption line of the edge magnetoplasmons in comparison
with the “bulk” modes.
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