Distribution of energy levels of quantum systems
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It is suggested that the distribution of the spacings between adjacent energy levels
of quantum systems be described as an uncorrelated superposition of a Landau-
Wigner-Dyson distribution for the irregular parts of the spectrum and a Poisson
distribution for the regular part.

1. We consider a quantum-mechanical system with a discrete spectrum. We con-
struct a distribution function in the spacing between adjacent energy levels, p(¢), by
working from the condition that p( pS JodS, where p is the level density in the given
part of the spectrum, is that fraction of the levels for which the distance to the neigh-
boring level lies in the interval between S and S + dS. This function was first intro-
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duced to describe the highly excited states of heavy nuclei (see Ref. 1 and the bibliogra-
phy cited there). It is now used widely in a variety of problems, even if there are only a
few degrees of freedom. This function has attracted interest because its behavior is
intimately related to the problem of the semiclassical quantization of nonintegrable
systems.>® The distribution function is known with physical rigor in two limiting
cases:

| exp (—1) for classical integrable systems, (1a)

p(t) =
—texp(—— —t ) for ergodic systems. (1b)

Most systems, however, do not conform to either of these cases. A simple example of
such a system is that with the Hamiltonian

H-—(p§+q)+ (p2+qz)+4qu2, 2)

which describes massive Yang-Mills fields that depend on a single variable.* Haller ez
al.’ have numerically calculated the energy levels for this system and have constructed
a histogram of the distribution of spacings between adjacent levels in various parts of
the spectrum for various values of the coupling constant k. It turns out that all the
distributions can be approximated well by the function

p (1) = (1+q)ptfexp(~pr'* 7y,  B=(T(Q2+q)/(1+q)}'*7, (3

which had been proposed earlier for fitting the distributions of adjacent levels of heavy
nuclei.' The parameter ¢ turns out to be a smooth function of the classical parameter
kE. In the present letter we construct a distribution function for systems of this type,
working from the properties of the classical phase space.

2. We know that for typical Hamiltonian systems with N>»2 degrees of freedom
the phase space can be partitioned into sets of two types, organized in a complicated
2,3,6,7
way*>%7;

a) a regular set consisting of points lying on invariant tori, as for integrable sys-
tems;

b) an irregular set, in which all the trajectories are unstable, so that the behavior
of the typical trajectories, almost all of which are ergodic on the (2N¥ — 1)-dimensional
set, is very complicated (or even stochastic).

With each such set, which has a phase volume % 4", where 4 is Planck’s constant,
we associate a system of semiclassical levels, whose number in the given part of the
spectrum is proportional to the phase volume of this set. With the regular set we
associate a system of regular levels, little different from the levels of integrable sys-
tems. In particular, it can be shown that the overlap integral of two regular wave
functions, which appears in the expression for the repulsion of two levels with approxi-
mately equal energies, is small, and the distribution function is of the form in (1a). In
turn, we associate with the irregular region a system of irregular levels, for which the
overlap integral is large, and p(z) is approximately the same as (1b). Since the different
sets are assumed to be nonintersecting, the overlap integral of the levels from different
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regions is small, and these levels do not experience any significant repulsion. In a study
of the overlap integral, it is convenient to use the formalism of Wigner functions,?
which, in the semiclassical approximation, are nonzero only near the region of ergodi-
city of a typical classical trajectory, according to Ref. 2.

3. The high-lying energy levels of quantum systems can thus be partitioned into
groups associated with the regular and irregular sets in the phase space. In the i-th
group, the probability for a neighboring level of the same group to lie between .S and
S + dS is known, equal to p,( p;S) p;dS, where p; is the density of levels of the given
group, and p;(t) is the distribution function. For regular levels, p;(t) is given by (la),
while for irregular levels it is given by (1b). The resultant distribution of any neighbor-
ing levels is found as an uncorrelated superposition of the distribution functions of all
the groups.

4. To determine this distribution, we construct the following functions for each
group of levels, using the procedure of Ref. 8:
t =]
Fi(t) = [ pfy)dy , Eft)= [ (1—Fy(y))dy. (4)
t

The function F,(¢) is the probability that the distance between the levels of the i-th
group is <t, while E,(¢) is the probability that an interval of length 7 will be free of
levels of the i-th group. Knowing E,(¢) for all the groups, we construct the two new
functions

d2E(t)

Eft) = ?Ei(f,-t), p(t) = —
where f; =p,/p and p = 2,p, is the total density of all levels (2,f, = 1). It follows
from the independence of the levels of different groups that E (¢) is the probability that
the interval of length ¢ will be free of levels of all groups, while p(¢ ) is the distribution
function of all adjacent levels, which we are seeking.

; (5)

5. The quantity f; in (5) is the relative density of levels in the i-th group. In the
semiclassical approximation it is equal to the fraction of the phase volume of the given
part of the spectrum which is occupied by the i-th set of trajectories and depends on
only the parameters of the classical problem; the discrete symmetry of the problem is
taken into account. The number of factors in (5} is equal to the number of nonintersect-
ing regular and irregular sets. It can be shown, however, that the ultimate result
depends on the total volume occupied by the invariant tori and is independent of the
complicated structure of the regular set. For systems with two degrees of freedom,
there is an infinite number of irregular regions with decreasing phase volume.*” Two
circumstances limit the growth of the number of regions: 1) For quantum-mechanical
problems, regions with a volume less than A" may be ignored. 2) If there exist n
irregular regions, for which we have f;—0, but for which X,f; is bounded, then the
distribution function of the corresponding levels tends toward (1a) in the limit #-—oc0.
For systems with N> 2 degrees of freedom, there is apparently only a single irregular
region in all cases.®’

We thus see that E (¢) in (5) contains a single factor with distribution function (laj,
which corresponds to a regular set and to small irregular sets, and one or several
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FIG. 1. Distribution of the spacings between neighboring, completely symmetric levels for system (2) with
k =0.005 and 85 < E <135. Histogram—Numerical distribution of 469 levels found in Ref. 5; dashed
curve—approximating distribution (3) with ¢ = 0.548 from Ref. 5; solid curve—distribution (6) with the
calculated value f7(0.55)=0.8.

factors corresponding to large irregular sets, for which p, (¢ ) is given by (1b). Here is the
explicit expression for distribution function (5) for the particular case of one irregular
region:

P
plt) =<y(~\%rf,t/f§ P2 2f,fR)eXP(—- Tt = 317 (6)

where y(z) = 2/\mexp (22§ exp ( — t>)dt, f; is the fraction of the phase volume of the
given part of the spectrum which is occupied by the irregular region (the symmetry of
the problem is taken into account), and f; =1 — f;.

Expression (6) is the basic result of this study.

6. Let us compare (6) with function (3), which is frequently used to fit the experi-
mental distributions of neighboring levels."> For all 0<g<1 we can choose f;(g) in
such a way that the difference between the functions (6) and (3) is small everywhere
except in a small vicinity of z = O (Fig. 1). At the prevailing accuracy, one distribution
function cannot reliably be distinguished from the other. Figure 2 shows f; as a func-
tion of kE for model (2), found from the kE dependence of ¢ (see Fig. 2b in Ref. 5).
Also shown in this figure are several values of f; found through a direct numerical
calculation of the fraction of the phase volume occupied by the irregular region. To
determine this quantity, we partitioned the constant-energy surface into small cells
and calculated the number of cells through which a typical irregular trajectory passes

T L
25 __ FIG. 2. The fraction of the phase volume occupied by the
. irregular region as a function of the parameter kE for system
B (2). Curve—The result of a conversion of the function g(kE)
8 from Ref. 5; points—results of direct calculations.
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over a long time. The error bars shown in this figure reflect the boundedness of the
number of partitions and of the computation time; the errors could be reduced sub-
stantially by carrying out more lengthy calculations.

7. In conclusion we wish to emphasize that although the assumptions on which
the derivation of distribution function (6) is based are rather crude, this distribution
function has a clear physical meaning, and it approximates the results of Ref. 5 as well
as approximating distribution (3) does. An important property of distribution (6) is that
for simple systems like (2) it allows an independent calculation for which it is sufficient
to find the phase volumes occupied by the different irregular sets.

I wish to thank D. E. Khmel'nitskii for many useful discussions and L. N. Shchur
for assistance in the numerical calculations.
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