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The time evolution of the fluctuations in the electric field and in the free-carrier
density in a low-mobility semiconductor is analyzed. If the voltage across the
sample is sufficiently high and/or the sample is illuminated by sufficiently intense
light of the appropriate frequency, a stationary state of the system will be unstable,
and stochastic self-excited oscillations of the electric field and of the free-carrier
density will set in.

The possible onset of stochastic self-excited oscillations in semiconductors with
hot electrons was studied in Refs. 1 and 2. In materials with a low mobility, the
heating of electrons is replaced by another factor: the field dependence of the ioniza-
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tion energy by virtue of the Poole-Frenkel’ effect and the field dependence of the
mobility u, by virtue of several factors.® In this letter we use a model energy spectrum
somewhat analogous to that proposed by Mott, Street, and Davis.® Specifically, we
assume that the kinetics of the electron processes is dominated by defects of one type,
which can be in one of three states: a positively charged state (D ; level E, and
density NV, ), a neutral state (Dy; E, and N,), and a negatively charged state (D_; E_
and N_). The correlation frequency, — U, is assumed negative; and the condition
E_ +E_ <2E, holds. In contrast with the model of Mott, Street, and Davis, how-
ever, we consider the case in which the level E_ nevertheless lies closer to the conduc-
tion band than to the valence band, and electron exchange with the latter is ruled out
(incorporating this exchange complicates the problem significantly without changing
the basic qualitative results). Denoting the free-electron density by n, we find the
following system of kinetic equations for the trapping:

A"+ = ¢y (- nN,_ + niNopy )+ 03(N3 - nNN, ), 1)

N_ =¢,(nNg— n,N_g;) + cs(N2 —nsN_N ). (2)
Here ¢, and ¢, are the coefficients of the trapping of conduction electrons to D and
D, centers, and c; is the coefficient of the “trapping” of an electron from one D, level
to another. For obvious reasons, we have ¢, > ¢,, while the difference ¢, — ¢; may be of
either sign.

The functions ¢, and ¢,, which depend on the electric field E, describe the
change in the probability for the return of electrons into the conduction band under
the influence of the electric field E. The analogous function ¢(E ) also determines the
field dependence of the mobility which results from the trapping of charge carriers by
shallow pockets, followed by a rapid return to the band (these traps should not be
identified with the D,, D_, or D_ centers).

We will be interested in the region of strong fields and in the case ¢, = @, = ¢> 1,
dIng/d InE>1. If, in particular, we use the expression

o = \/EG_/E sinh \/E[E, , Eo= (kT)*¢/4e® , (3)

where € is a quantity near the high-frequency dielectric constant, then we find d Ing/
dInE = J(E /E,)"/?. The quantities n,, 1,, and n, are given by the following expressions
(we place the origin of the energy scale at E_ ; we then have E_ =2E, — U)

. Eo—Ec J101 U Eo-‘Ec
ny = g N, exp T + o MmT &N, exp kT t T )
1
+ J_zgz- n = exp(— 5]_ + fﬁ% (4)
¢y 3 kT c3

Here the g, are the ordinary statistical weights (i = 1, 2), and J, and o, are the flux
density of photons of the corresponding frequency and the cross section for the cap-
ture of a photon by the centers D_ (i = 2) and Dy(i = 1) for the transition D,—D or

i =3 for the transition 2Dy—D 4 D_).
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The equation for the electric field in the sample is the same as in Ref. 1:
e 47| & L
E = — -l o+ —FE ) (5)
P ‘tSR ( SR) ]

where 0 = enpo@ (E'), pto = (4(E + 0}, €* = € = 47CL /S, S is the cross-sectional area of
the sample, and the rest of the notation is explained in Fig. 1.

Equations (1), (2), and (5) must be supplemented with the relations
No+ N_+ N_=N, n+N_=N, (6)

(the second of which is the condition of local neutrality). Relations (6), along with the
condition E<& /L, determine the “physical region,” within which the initial values of
the variables must be specified. According to (1), {2), and (5), the integral curves cannot
go outside this region.

Dynamic system (1), (2), (5) is analyzed in the standard way. It is easy to sec that
in the physical region there may be no more than two singularities, and in many cases
of physical interest a singularity turns out to be unique. A sufficient condition for this
situation is the satisfaction of the inequalities n,N 5 '@ > 1/2 and n,n; ' <4(if ¢,>¢,)
or n,N 5 ' < 4if c,<c;).

The conditions for the stability of the singularities are rather lengthy, but the
(overly stringent) sufficient condition can be written in the simple form

dln nyn,aCyC
71 Ll (7a)
m dinE n1c1+n2cz
- ding < MMt L e, <K (7b)
m dInE H1Cy + ni3Cs

Here 7' = 4meuyn/e* is the reciprocal of the Maxwellian relaxation time in the
material, which has a conductivity eu n and a dielectric constant e*.

The fact that the derivative of the function ¢ appears on the left sides of inequal-
ities (7a) and (7b) should not be surprising. This derivative arises from the field depen-
dence of the mobility. If the functions describing the field dependence of the mobility
and of the electron-production probabilities were different (@, ¢, @,# @) the ratios
@@ " and @, ! would have appeared on the right sides of (7a) and (7b).
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It is easy to show that under conditions of an instability the singularity will be a
saddle point, and one of the roots of the corresponding secular equation will be real
and negative, while the two others will be complex with a positive real part. The latter
turns out to be smaller in absolute value than the negative real root; i.e., we have the
conditions of the Shil’nikov theorem*: a countable set of saddle-type periodic motions
arises near a singularity. According to Ref. 5, this assertion means that a homoclinic
structure must arise here. In other words, stochastic self-excited oscillations of the
electric field and of the densities of free and bound charges in the sample arise in a
system of this type (there are consequently oscillations in the current in the circuit
and/or the voltage across the sample and across the load resistance).
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