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A new representation of the Green’s function of the Schrédinger equation is
proposed. In this new representation, in the form of a functional integral, the
problem of an electron in a random potential can be reduced to a field-theory
problem without the use of a replica method or supersymmetry.

The problem of Anderson localization cannot be solved by perturbation theory.'
Attempts have accordingly been made to formulate the problem of the motion of an
electron in a random potential in terms of the field theory, which would make it
possible to go beyond perturbation theory.>™ In these studies, the electron Green’s
function has been represented as a functional integral over some field variable, and an
average has initially been taken over random external potentials. This averaging gives
rise to an effective nonlinear self-effect of the electron field, and the problem can be
solved by field methods.

The Green’s function of an electron in a random potential, U (r) can be written in
the energy representation as
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Zy 4(E) = [DVR W exp { £ifarF(E-HEis)y ) , 2

where H = I/;fo + U(r), and ffo is the Hamiltonian of the free electron.

If the normalization denominator Z, , were independent of U, it would be a
trivial matter to average Green’s function (1) (or the product of different Green’s
functions) in the Gaussian case. If, however, ¢(r} is an ordinary one-component wave
function, then we have

Zp o(E) « exp{ —Ttln(—i{E—H+i8)} « M(E—e, tis) ", (3)
’ A

where ¢, are the eigenvalues of f]; i.e., Zg 4 depends on the potential. Wegner” has
suggested eliminating this dependence by using a replica method, in which ¢(r} is
treated as an N-component vector, and the limit N—0 is taken in the final expression.
Recent studies have shown, however, that the replica method used outside perturba-
tion theory can lead to incorrect results.”

Another method for eliminating the denominator Z (a supersymmetry method)
was proposed in Ref. 4. This method differs from the replica method in being math-
ematically rigorous. However, the introduction of Grassman variables in a problem
without an interaction, in which the Fermi statistics of the electrons is not manifested,
seems physically unjustified.

In the present letter we propose a new method for representing the field integral
for the Green’s function. In this new method, no additional field components are
introduced; ¢ has the clear physical meaning of a single-component wave function;
and we have the denominator Z, ,=1.

The introduction of a normalizing denominator in field theory corresponds to the
cancellation of unconnected vacuum diagrams. It is clear, however, that in a one-
particle problem (described by an ordinary Schrddinger equation) there can be no pair
production, even virtual production. For this reason, if the functional integral is writ-
ten correctly, there will be no need for a normalizing denominator. The same circum-
stance explains why the Feynman path integral® also has no nontrivial normalizing
denominator.

We write the Green’s function in the time representation as a functional integral
over time-dependent wave functions (r, ):

GRAfxy, %)) =+ Z; IA JD VD " Y(xa)W xy)exp(tif dx \l’*i KAy, @
Zy 4 = SRV exp(tifax v LR Ay 5

[R4 =iy —Htis; x=@,1). 2

If the functional integrals in (4) and (5) are to have a completely definite meaning,®
they must be understood as the limits of finite-dimensional integrals, which arise upon
the introduction of the discrete time ¢, = nd, wheren = — N, ..., N. ThAe integration
over the time ¢ is replaced by a summation over #, and the operators LR are the
limits of the finite-dimensional matrices
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These matrices are triangular; L8+ =IL4; and in L® all the elements above the diag-
onal are zero, while in L* all the elements below the diagonal are zero. It is thus clear
(this point can be proved rigorously) that L® generates a retarded Green’s function,

while L* generates a leading Green’s function:

SR,A _ (TR, Ay-1 R,A _ , “R, A (8)
GH A =Ly 60T = lim Gk 4.
A> 0, N> =
The determinant of a triangular matrix is equal to the product of its diagonal elements,
so we have det(L®*) =+ > *!=£0. This condition ensures the existence and
uniqueness of the inverse matrices in (8), which we need if representation (4) is to be

meaningful. If we define the measure in integrals (4) and (5) as
N

DY @tl/*E 1 n_lDRew(r,tn)DImw(r,tn), 9)
n=-N
then we have
o :7RAN = = % 7= 10)
Zp 4= detFiLR) =1, Zp 4 = Al"f)’,zvﬂ Zpog =l (

We have thus shown that expression (4) can be written without any normalization
denominator at all. This circumstance means that taking a Gaussian average over U is
a trivial matter in representation (4).

All these arguments apply to a Hamiltonian H (¢), which depends on the time in an
arbitrary way. In the case of a static Hamiltonian H, we write (4) and (5) in the energy
representation and find

GR A (r210) = F ifDYDY Ugley Wty Jexp (£1[dE'dry b(E —H £i8)y 0}

11
In the energy representation, condition (10) becomes ()

1=2p,u” g Zp, a(E) =TI (E'—¢, +i8)7" . (12)

Since all the singularities of (12) lie in the same half-plane of the complex variable E,
we see that the latter product is actually independent of ¢;. To prove this assertion
rigorously, we must transform (10) to the energy representation for finite 4 and ¥ and
take the limit only after the subtraction of the product. From (12) we have
Z i 4(E)xclg g Z, 4(E’); using (2), we can then easily prove that definitions (1) and
(11) are identical.

Consequently, in order to avoid a nontrivial normalization factor, we must re-
place the functional integration over #(r), which depends on only r, by an integration
over ¥(r, t) or over . (r}), i.e., over wave functions corresponding to all energies.

The generating functional, which generates arbitrary products of G® and G4,
averaged over a Gaussian admixture potential, is
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where ¥(r — r') is the correlation function of the random potentials, and the integration
is carried out independently over 1, (x) and ¥, (x); here (Dy)==Dir Dyt Dif D%,
After integrating over U and using (5) and (10), we find

Z(pg.pg)= J(D)exp (i, + ifdx [(PY) + (¥0) ]}, (14)
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~ . . .
where L & corresponds to U = 0. The two-particle Green’s function associated with
the density-density correlation function can be expressed in terms of the generating
functional as follows:

5*Z (g, p)

< GRlxyx  JGA (X X)) > = ‘
i 50,80, (x)5 g (x2)80g(x:) [p=0 . (18)

Expressions for more complex correlation functions can be written in an analogous
way.

Expression (15), derived for a random static potential, is in direct correspondence
with the expression derived in Ref. 7 for a time-dependent random potential (phon-
ons). The presence of a correlation between wave functions at all times (for all energies)
in (15) is a consequence of the static nature of the potential, and it reflects the fact that
the expression for the Green’s function of the Schrédinger equation at a given energy
contains eigenfunctions corresponding to all energies.

As in Refs. 2 and 3, we could introduce collective variables (Q-matrices) in inte-
gral (14) by means of the Hubbard-Stratonovich transformation, but in our case the Q-
matrices can describe the correlation between wave functions for different energies:
Qry: « (¢E;//_E>
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