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The spin-relaxation mechanism in a quantizing magnetic field H is analyzed. This
mechanism is peculiar to electron systems in which the degeneracy of the spectrum
has been lifted. In crystals such as wurtzite, the relaxation time, measured in
picoseconds, has an enormous anisotropy in the H direction and an unusual field
dependence.

In the present letter we analyze a mechanism which leads in the case of Landau
quantization to a very fast spin relaxation of the electron system in which the Kramers
degeneracy of the spectrum has been lifted. We will show that the relaxation linked
with this mechanism, which has previously not been discussed in the literature, has
several unusual properties.

A simple example of this system are the electrons in crystals such as wurtzite with
a symmetry group C, (to which CdS and CdSe, for example, belong). In crystals of
this sort, the behavior of electrons near the conduction-band edge is determined by the
Hamiltonian
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where ik is the operator of the kinematic momentum in a magnetic field, g is the
spectroscopic-splitting factor, 12, is the Bohr magneton, & are the Pauli matrices, A is a
constant which determines the extent of the spin-orbit splitting of the conduction band
at k50 in the absence of a field, and ¥ is a unit vector directed along the hexagonal C,
axis. Since a Hamiltonian such as H,, = A9[d X k] appears in several other problems,
in particular, in the description of spin-orbit interaction in 2d electron systems,” the
model under consideration is of a more general interest.

In the absence of a magnetic field, the interaction H_, is, as indicated in Ref. 3,
responsible for the appearance of a spin-relaxation precession mechanism which is
analogous to the familiar D’yakonov-Perel’ mechanism. In a field in which the Zee-
man level splitting greatly exceeds the spin-orbit splitting, this interaction plays a
different role, establishing an effective coupling between the electronic spins and the
lattice. This capability of crystals with a T, symmetry group, in which H,, « k3, was
initially pointed out by Rashba (see footnote 3 in Ref. 4). We will use this idea to show
how the spin-lattice interaction arises in the model that we are analyzing. We will
introduce into original Hamiltonian (1} a perturbation H, ; caused by the lattice de-
fects. We will later define H,; concretely, after examining the more important interac-
tions that occur at low temperatures—the interaction with ionized impurities (e-i) and

213 0021-3640/85/050213-04$01.00 © 1985 American Institute of Physics 213



the interaction with piezoacoustic phonons {e-p). The term H,, in the complete Hamil-
tonian H = H,+ H,, + H,, can be eliminated in first order in A by means of a
canonical transformation H = e ~ 5 He®, where S is given in symbolic operator nota-
tion by

o0

S=—1ifdre” S’Texp(iHof)Hso exp(—iHg1), 6—>0. {2)
0

As a result, we can single out from H the operator H,; =[S, H, ] which generates
spin-flip transitions due to electron scattering.

Let us consider the transitions between the upper (s = 1) and the lower (s = )
spin subbands of zero Landau band under the assumption that the electrons which are
photoexcited to the conduction band after being thermalized in a time 7, < T, are near
the bottom of the upper subband. The spin-lattice-relaxation time T, is determined in
this case by

o0 o0

1 ,
7, = AWk | dk Sl ), )

where 7ik | is the projection of the electron momentum in the direction of H, Wk ) is
the probability for the spin-flip transition, f(k,)=exp(— k}/k7) is the Boltzmann
factor, and %k is the thermal momentum.

To calculate 7' ' for the general case of arbitrary orientation of the magnetic
field H with respect to the x,, ¥, 2, coordinate system with the z, axis parallel to Cg,
we must transform to an x, y, z, coordinate system (with the z axis parallel to H), in
which the eigenstates of the Hamiltonian H, form a Landau basis |, k,, k,,s). In this
transformation, the same as that of Rashba and Sheka,® we switch to new components
of the momentum and spin operators by means of the ReSO(3) and DeSU|(2) matrices,
respectively. Each matrix is parametrized by Euler’s angles @ = ¢ + 7/2 and ® = 6,
¥ =0, where @ and @ are angles that determine the direction of H in the x,, y,, z,
coordinate system. Using (1) and (2), we thus find the following expression for the
matrix element of the spin-impurity interaction, H_;:

5-1
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Here
T T - L (5)
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w, and w, are the cyclotron and Zeeman frequencies, m, is the “spin” mass, m is the
free-electron mass, fik); is the magnetic momentum, C, is the Fourier transform of the
screened Coulomb potential, and ¢, and ¢ are the polar coordinates in the g,, g,
plane. Using expressions (3)—(5), we find
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N, is the impurity concentration, ¢, is the dielectric constant of the crystal, e is the
elementary charge, Ei( — &} is the exponential integral, and g, is the reciprocal screen-
ing radius. Wallace® showed that ¢, « k;; in the ultraquantum limit, and hence { does
not depend on H.

Let us now consider the case of piezoacoustic scattering. We disregard the crystal
anisotropy, since it is much weaker than the anisotropy caused by spin-orbit interac-
tion. Assuming that electron scattering is elastic, a justifiable assumption under the
condition ky <7 /#iv (T is the temperature, and v is the velocity of sound), and using
the same procedure as in the preceding case, we find

1 1/2 X
— .= 167 9
Tip ,ove2 h? <2m (hvk hw ®

where p is the crystal density, £ is the piezoelectric modulus, and the expression for
F,(0) is derived from (7) through the substitution {—.

Before analyzing the results, we should mention that according to Egs. (6)—(9),
Ty; <H*?and T, « H*? A field dependence of this kind is qualitatively different
from the dependence T; < H ~“(a >0), which we find from the currently discussed
mechanisms of spin relaxation in crystals without an inversion center.” The difference
stems from a Hamiltonian which is substantially different from that in Ref. 7 and
which is responsible for the relaxation.

The most intriguing feature in the relations obtained by us is the strong depen-
dence of T, on the angle between the directions of H and Cj, the crystal axis. If the
conditions 7«1 and £<1 hold, the ratio 7'} /T'; for the two field orientations (H||¥ and
H17) is large in the parameters 1/7¢ and 1/ in the case of e-i scattering and e-p
scattering, respectively. Numerical estimates of CdS (m =0.2m, g=1.8) give
TY./TY;=T\,/T}, =20; for CdSe (m = 0.013m,, g = 0.5) we have T'|,/T}, ~200 and
T ”p/ T'i, =~450. We see that the anisotropy is indeed enormous.

Let us finally determine the order of magnitude of T, in CdS by setting H = 80
kOe (H1?), T=4.2 K, and N; = 5X 10** cm™2. Assuming that v~ 10° cm/s, €,~ 10,
B~10° esu, and A = 1.6X 107" eV-cm (Ref. 8), we find T'{,~2 ps and T{, =5 ps.
Note that under the same conditions the momentum-relaxation time is 7, ~0.1 ps
(Ref. 9). The usual hierarchy of electronic relaxation times thus applies in this case:
7, €T. We point out, for comparison, that the spin-relaxation times obtained by us for
CdS are three to four orders of magnitude shorter than those for InSb, a material with
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the strongest spin-orbit coupling in the 4B compounds. These estimates show that at
low temperatures the relaxation mechanism proposed by us plays a dominant role in
establishing a spin equilibrium in the systems under consideration.
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