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Allowance for higher-order gradient terms in the free energy of nematic liquid
crystals gives rise to a nonlinear equation of motion for the director which allows a
soliton solution.

The nonlinear dynamics of liquid crystals, which leads to the formation of soliton
structures in the alignment of the director, are now being studied. The formation of
such structures can easily be observed experimentally by using optical methods.

Lin Lei et al.' proposed a qualitative theory to explain the soliton structure,
observed experimentally by Guozhen,? which is produced in the director alignment of
a nematic liquid crystal under the influence of a uniform shear flow. The nonlinear
dynamics of the director of a nematic, which is in a static magnetic field and which is
excited by an electric or magnetic pulse, was studied by Kamenskii.> The author
showed that a certain combination of parameters gives rise in this case to a soliton-
type director alignment.

In the present letter we propose a new mechanism for the formation of solitons,
which is based on the use of higher-order terms in the expansion of free energy in
gradients of the director n. The fact that higher-order terms must be used in other
systems in many cases was demonstrated in Refs. 4-6. The results of our study can,
after some modifications, be used to describe the nonlinear dynamics of superfluid He?
and of magnetic systems. The derivation of the equations of motion for the director n
of a nematic liquid crystal is usually restricted to the use of free-energy expansion
terms which are quadratic in the spatial derivatives. Since the energy must be invariant
with respect to the transformation of the D_, group, we must stipulate that the
higher-order gradient terms be also invariant with respect to the transformation of this
group. We restrict ourselves to the use of fourth-order invariants (d3n)’, (J;n)?,
(8,3, n)?, etc. Furthermore, we assume that this problem is effectively one dimension-
al (i.e., all changes in n are uniform in the plane perpendicular to an x axis). Such a
formulation of the problem was discussed in Ref. 3. Its advantage is that it eliminates
the so-called return flow.

The equation of motion for the director n = (0,sin @, cos @) in this case is
$+yé=c o, (1+apl)+ Bo .. 1 (1)

Here > =K /J,y = y,/J,a = A /K, B = B /K, K is the Frank rotational constant, J is
the moment of inertia of the director, ¥, is the rotational viscosity, and 4 and B are the
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appropriate combinations of the coefficients multiplying the fourth-order invariants in
the free energy.

Let us assume that at time zero an initial perturbation occurs in a certain region
of the sample. In this perturbation (which is uniform in the y, z plane and which has a
scale dimension L along the x axis) ¢(t = 0) = 0 and ¢ (t = 0) = 2g,. If the condition
go>7 in Eq. (1) is satisfied, we can drop the dissipative term. If the initial perturbation
is such that ag; /c*> and 8 /L 2«1, we can omit the nonlinear and dispersion terms in (1).
As a result, the initial perturbation decays in a time t~L /¢ into two plane waves
@ =filx + ct) + folx — ct) which can now be treated independently.

Assuming that the initial perturbation is symmetrical with respect to x, let us
trace the evolution of a wave that travels to the right (a complete solution is symmetric
with respect to the origin of coordinates). Switching to dimensionless variables

&={x—ct)/L, 7= |B|ct/2L? and introducing the function u(&,7) = |68 /a| /2 g%—,

we find for this function

g Tl signg = 0, (2)

— + signo6u’u
or
i.e., a modified Korteweig-de Vries equation. Using the derivative dp/d¢ as the initial
data for this equation at t = L /2¢, we can solve this equation by the method of the
inverse-scattering problem.’

The signs of the constants @ and S are germane to the solution of Eq. (2). If the
signs of these constants are opposite, Eq. (2) does not have a soliton solution. If the
signs are the same, the solution depends on both the sign of ¢ and £ and on the initial
data of the problem. If g,L /c is larger that ~1, a number which is determined by
solving the spectral problem for (dp/d¢ )(&,7 = 0), and sign a, 8> 0, then the solution
of (2) consists of solitons that extend in the positive direction £ and a continuous
spectrum that extends in the negative direction. If the signs of @ and B are negative,
the solitons and the continuous spectrum extend in opposite directions. The soliton
solution of (2) is’

u; = 2N sech (8\3 7 — £+ &), Gl

where A, are the moduli of the imaginary eigenvalues of the spectral problem, and 8}
are the phases that can be calculated if the interaction of solitons with the continuous
spectrum and with each other is taken into account. We see from (3) that the narrowest
soliton of width ~1/24, .. moves at a higher velocity, v =442, . Since the ampli-
tude of the continuous spectrum decreases as 7~ '/ (Ref. 8), the solution will, after a
certain time, be determined primarily by solitons. Assuming that the elapsed time 7 is
such that the solitons have separated a distance exceeding their scale dimensions, we
find @(£ ), with allowance for the fact that () = 0. Integrating expression (3) over &,

we find for each soliton #,
¢;=2laf6p |~ V2 arctan { exp [8)\?7—— 28+ 85 11, (4)

Consequently, in its final form, the function @ in x, # coordinates appears at large
times as a series of steps of height 7(63 /a)'/2, which are separated by narrow (of order
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A ') regions that propagate at velocities close to velocity c. The optical pattern corre-
sponding to this solution is a series of bands of various intensities, separated by nar-
row, transitional regions.

To describe the solution completely, we must know the nature of the initial per-
turbation in order to calculate its scale time, it scale dimension, and the values of 4,
and 8. The results for specific cases will be reported in a more comprehensive study.
Thus far, we have been discussing the initial perturbation which is quite smooth in x.
Equation (1) also allows a solitary-wave solution corresponding to a concentrated ini-
tial perturbation,

272 _
¢ = 2|68/a|? arctanexp | + (x—wt}(w ad 2

1/3
) ] (signax = signf), (5)

This wave propagates at a velocity w, which is not necessarily close to ¢. In this case,
however, an exact solution cannot be obtained with arbitrary initial data.

The signs of the constants & and S can at least be determined from experimental
observation, even if our description is only in qualitative agreement with experiment.
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