Stability of a spherical EHD
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The stability of the electron-hole drop (EHD) relative to its change of shape is
examined in terms of the hydrodynamic approach, taking into account the
surface tension and elastic strain.

PACS numbers: 71.35. + z

As can be seen from the experiment, the drops of an electron-hole liquid (EHL) in
a semiconductor irradiated by a laser usually are not larger than 10 cm. Larger drops
are formed in the regions of specially produced elastic strain. Although a number of
hypotheses, such as the “phonon wind,” have been advanced to explain this fact,'
there is yet no clearly formulated theory. In this note we investigate the stability of
spherical drops as one of possible mechanisms which limits their size in the hydrody-
namic approximation.

We assume that the friction of exciton gas and of the EHL against the lattice
(because of the phonons or impurities) is sufficiently large. Therefore, disregarding the
nonlinear terms and the compressibility of EHL, we obtain an equation for the interior
of the drop:
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Here v is the velocity, p is the density, p is the pressure, # is the density of particles in
the EHL, U is the potential energy of the elastic strain, which is assumed to be isotrop-
ic, 7, is the recombination time, and 7; is the momentum loss time in the EHL.
Analogously, in the exciton pair:
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where u is the exciton mass. In these equations the nonlinear term (v{y)v was dropped
and the Clapeyron equation is valid. The exciton temprature T in the same approxima-
tion is assumed to be equal to the lattice temperature.

These equations have the following boundary conditions: a) the pressure of the
supersaturated exciton gas p . produced by the laser is constant at a distance from the
drop, b) the pressure at the surface of the drop is equal to that of the saturated vapor,
if the curvature of the surface is taken into account'” (R, and R, are the main radii of
the curvature and o is the surface tension),
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¢) the normal mass flow at the surface of the drop is continuous and the motion of the
drop is taken into account.

Equations (1) and (2) with the specified boundary conditions have a spherically
symmetric, steady-state solution:
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The radius of the drop is determined by
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In analyzing the stability of this solution, we assumed that
p=p°(r) + Z eXP()\zm‘) Y, (6, AP m(T ).

The shape of the drop is given by
R=R_+ 12"1 expg, )Y, (0, 6y,

The variables are divided in the spherical coordinates (Y, are spherical functions)
and the linearized equations have the form
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in the pair and an analogous equation with U = 0 in the EHL. The boundary condi-
tions can be written in the form
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We used a well-known expression for (1/R,) + (1/R,) at the nearly spherical
surface (see, for example, Ref. 3). The quantity m is not included in Eqs. (4) and (5), so
that the eigenvalues 4,,, are independent of m and are 2/ + 1-fold degenerate. We
ignored the terms with A, which take into account the compressibility, under the
assumption that A&7, T /uR % Since the linearized equations can be easily solved at
U = 0, we write the corresponding expression for 4,

- T a2y,
N

Al=(l_1)

Thus, the stability criterion has the form:

Rr 7,0 %
R, &R =(
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As expected, the instability initially sets in at / = 2. According to the existing data for
germanium,"! o~ 10, 7,=107%, 7, =107, and n; = 10" (CGS); hence, R, =107 cm.
Note that these data are very approximate. Because of the degeneracy of m, we cannot
determine from general considerations when the A ’s are small whether the drops will
be nonspherical and stationary or whether they will break up immediately (hard
excitation).

The case of Us£0 is more complicated. Generally, 4; can be determined only by
numerical integration. We examined a model in which we assumed that rU’'/T> 1,
r<riand rU'/T«]1, r>r, > R,. This model makes it possible to determine the analytic
expression for solution of the equations for the exciton pair.” The expression for
perturbation of the vapor pressure has the form

c up BT
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The quantities 4 and B are slowly varying functions.
Omitting simple calculations, we write the expression for the increment:

1-3 oU n_r

-l
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(the small terms in the parameters T/U'R and p,/p; were dropped). The stability
condition has the form:

au PL R

Note that in case of instability the perturbations with large / > 3 now begin to increase;
moreover, the higher the number the faster they increase (if the surface tension is
ignored), which apparently immediately breaks up the drop.

The physical nature of the specified instability is attributed to the formation in
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places of larger surface curvature of the drop of large concentration gradients of exci-
tons, which produce a large diffusion flux. This large diffusion flux draws the surface
of the drop toward itself and further increases the original curvature.

In conclusion, we note that, although there is no absolute certainty that the real
size of the drops is connected with the proposed instability mechanism, its existence
must play a role in different, more refined theories of the structure and formation of
EHD.

We thank E.I. Rashba for a useful discussion.
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