The hydrodynamics of black hole vaporization
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An approximate spherically-symmetric solution is obtained for the equations of
relativistic hydrodynamics which describe the latter stage of the quantum
vaporization of a black hole. The hydrodynamic state—terminating at
temperatures of the order of the 7-meson mass—provides means for finding the
energy distribution of scattering particles.

PACS numbers: 95.30.Lz, 97.60.Lf

Hawking has shown' that a small black hole with mass m emits like a black body
with a temperature 7= m ~ '.»’ This process leads to the vaporization of a small-mass
black hole in a finite time: m = ( — ¢) '/* (counting time from the onset of vaporiza-
tion). The emission temperature at m <u ~ ' exceeds the 7-meson mass and the pro-
duced particles interact strongly with each other. Thus, the shape of the emission pulse
that propagates from the exploded black hole must be determined by solving the
relativistic hydrodynamics problem which is similar to the case examined by Landau
of multiple particle production.? The Landau solution for a one-dimensional dispersion
represents a wave with a steep front and exponential decay. Therefore, when address-
ing the problem of spherically-symmetric dispersion one may expect that an attenu-
ation of the radiation pulse following the black hole explosion also exhibits a certain
asymptotic power behavior.

In addition to having astrophysical applications, this problem also represents a
considerable methodological interest in connection with the Kundt problem,® for
which the entropy is defined on the surface of a black hole or in its emission. The
solution found in our work is adiabatic, which allows us to calculate for a finite
number of dispersed particles with respect to the initial entropy of a black hole.

We shall assume that the equation of state of an ultrarelativistic medium p = /3
holds without any restrictions. Thus, the energy-momentum tensor is T
= e(4uu*5%)/3, where u, is the four-dimensional velocity. The region where hydro-
dynamics applies—specified by the inequality 7> g—considerably exceeds the gravi-
tational radius of a black hole in the later stages of dispersion. We shall, therefore,
write the laws of conservation T'f;, = 0 in a plane spherically-symmetric metric. This
yields two equations for the energy density €(r,t) and velocities uy, = u° = (1 + u?)"/%

u'= —u,

rz-gz--e(4u3 —_ l) + 4—(;21‘— 6u0u1r2 =0,

49 oyl —Q—e(4uf+l)+26u3r’l=0- (1)
at ° ar
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The foregoing equations yield

d_.3/4,2 d 3/4,2,1 =0,

_— u® + ¢

dt or
which represents the law of conservation of entropy (su’);; = 0 (s~ € **—entropy den-
sity in the case of the ultrarelativistic equation of state).

Let us first consider a stage characterized by slow, quasi-stationary vaporization.
If we assume that #> 1 and neglect the time-dependent derivatives in the hydrodynam-
ic equations, we get e =T*=r"% u = r(—t) ', The region of hydrodynamic ap-
plicability extends, in this case, from the black hole surface » = ( — ¢)'”? to a radius
r =1~ ' where the temperature is equivelant to the interaction energy . In order that
the quasi-stationary solution may apply, we need the black hole mass to be much
greater than the total energy in the hydrodynamic region, i.e., m=(—1¢)"’
>*"eu’r*dr=u"'(—1t)~?7. Thus, the quasi-stationary vaporization stage occurs
when m»m, =pu ~ '3,

We shall now search for a solution of Eq. (1) beyond the vaporization stage in the
region r>|r — ¢ | assuming that u, ~u'=~u>1. We introduce the following notations:
7 =logr/Ry; 7 = loglr — t|/&y; | = loge/e,. with the constants R,, &, and €, still
unknown, we get the following equation for the function / (r,7):

o 3 3 a1 a
342— + —+— — — =0 @

dn dr 4 dn Or ’

which differs from a similar equation of one dimensional hydrodynamics only by
virtue of the constants.” The velocity u is found from the following expression:

r 1 61/87_7
(r -—t)T (3 + al/ar)

The general solution of Eq. (2) is in the parametric form

u? =

3+ 24
l(r, r,) =A77— 4+3Ar + B(A),
al r dB
A"t aasaea

where the function B (4) is arbitrary. The precise formulation of the boundary condi-
tion for Eq. (2)—as also in the case of one-dimensional hydrodynamics—is difficult.
We shall determine the asymptotic solution of Eq. (2) for > [dB /dA | when the shape
of the propagating wave is independent of the conditions of energy released. Assuming
B = 0—which corresponds to predetermination of €,—we get

4 8 4
Ky m) e = 4 = [T
oo 3" T g Tt gVorn
u? = 1+ [T 3)
T or—t 477 ’
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\ FIG. 1. Regions of applicability of the rela-
\ tivistic hydrodynamics solutions for the va-
\ porization of a black hole: I—quasi-sta-
7 2l A tionary vaporization; curves: 1—
r={(—t)'*—black hole surface; 2—
r=pu";3—(—1t) = . ll—region of lead-
ing wavefront; curve 4a—surface
T(rt)=p, curve Sa—r —t=r. Ill—re-
gion of trailing wavefront; curve 4b—sur-
face T'(r,t) =pu, curve Sb—t—r=r.
Dashed lines 6 and 7 show respective posi-
tions of the energy and entropy flux densi-
ty maxima.
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The positive nature of « 2 indicates that for > T (wavefront) the upper sign in
Eqgs. (3) applies, and for r < ¢, the lower. Thus, in the case of a spherically-symmetric
hydrodynamic dispersion, as opposed to the one dimensional case, the wavefront
steepens according to the power law.

In order to evaluate the constants R, &, and €, we shall consider the time
dependence of the energy flux 7'} = eu” and entropy flux su' = &*u through the
surface of a sphere 4777, At r> ¢, if we neglect the coefficients and the logarithmically
slowly varying expressions, we have

1 - —_
ew2d(r —t)=expd- -3—-(\/17 — 2y-r )2 eoRg dnp ;

I — ——y
dN= sur?d(r -t)=exp —--2-—(\/1rp—\/-r)2 S/ARSTEV 2 gy, (y
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In order that the integrals may converge, r must be negative, i.e., &,
&|r —t|&reR,. The integration of expressions in Eqgs. (4) leads to the result that the
total energy and total number of particles (entropy)—crossing a sphere with of a given
radius »—are constant quantities. They represent, respectively, the initial mass of a
black hole m,, and its initial entropy which, in accordance with Ref. 1, is m). We must
pick the black hole mass for m, for which the quasi-stationary vaporization regime
fails to hold, i.e., m, = gt = '/>. The smallest parameter of the problem &, which deter-
mines the transition from the leading wavefront to trailing, should be of the order of
Planck’s length: £, = 1. Having calculated the remaining constants, we shall formu-
late the final result for the coordinate-dependent temperature:

L In(r —¢t) 21lar 1 ) SL : '1_ S,
exp{ - —— —~ - —_— —t)( =L — :
P\ T 3 gt g Vinr )i mr) T

1
L In(t —r) 2lar 1 5 N ’
——— - e~ Sintt =i =1 - :
P T T8 3 3 7 Vinct ’)(3L 1‘”,> ;o<

Above, L = — log u = 46. The region of applicability of the above equation—
which follows from the inequalities T>p and |r — ¢ | < r—is shown in Fig. 1. The
energy density maximum (temperature maximum) and particle density maximum—
both calculated from Egs. (4)—are attained inside the region of applicability of the
solution.

After crossing the surface T = u, the particles cease interacting with each other
and disperse in a manner such that the energy of each particle
E=Tu=pu[r/(r—t)]'"? remains subsequently constant. The second relationship in
Egs. (4) may be used to find the particle energy distribution dN /dE in parametric
form. This distribution exhibits a maximum at E = exp| — 0.083 L |.

In conclusion, we shall address the astrophysical aspects of our solution. The
shape of a pulse from an exploded black hole that a distant observer would see is
determined essentially not by the hydrodynamic stage but the subsequent scattering of
dispersed particles in interstellar space. Therefore, of greatest interest to astrophysics
(in particular, to the determination of the formation of elements in a universe contain-
ing black holes?) is the study of interaction between the particle flux with a given
energy distribution and the surrounding medium.

"'"Planck’s system of units is used in this article: ¢ = #i = G = 1. All equations are written with accuracy up
to constant multipliers of the order of unity. The 7-meson mass u is a parameter of the problem and in
Planck’s units is 10",
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