Nutation effect in a system of coherent excitons, photons,
and biexcitons in the region of the M band
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The mechanism coherent conversion of excitons and photons into biexcitons and
back to excitons and photons in the region of the M luminescence band of the
semiconductors is investigated. It is shown that the conversion rate depends
greatly on the initial state of the system.

PACS numbers: 71.35. 4+ z

The action of a strong monochromatic wave on a two-level atomic system causes
its population to vary periodically (nutate) with a frequency that depends on the
matrix element of the dipole moment and on the field intensity. Burshtein and Pusep'”’
predicted the occurrence of a supernutation effect when the concentration of photons
is much smaller than that of the two-level atoms. If the frequency of laser radiation is
in resonance with the exciton level, then the excitons in the crystal will be produced
faster than the nutation process in the individual atom. This situation imposes basical-
ly new constraints on the coherent nonlinear effects in the exciton region of the spec-
trum. Moskalenko et al.'" examined the coherent exciton-photon nutation effect, tak-
ing into account the exciton-exciton interaction and Davydov and Serikov' studied it
in the harmonic approximation in open gquantum systems.

In this communication, we propose a method for identifying the biexcitons, which
is based on the examined coherent exciton-biexciton nutation effect in the region of the
M luminescence band for much shorter times than the relaxation time of the excitons
and biexcitons. The picosecond pulses from the coherent resonance laser radiation can
produce large concentrations of coherent biexcitons, which subsequently recombine
radiatively and produce an exciton and light quanta in the region of the M lumines-
cence band. We define exciton-biexciton nutation as the process of multiple conversion
of coherent biexcitons into coherent excitons and photons and back into coherent
biexcitons and the nutation frequency as the frequency of such conversions. The dyna-
mics of this process differ significantly from those of exciton-photon nutation.

The Hamiltonian of the coherent exciton, photon, and biexciton system has the
form
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where a,, b, and C, are the annihilation operators of the biexciton, exciton, and
photon, respectively, with the wave vector k; fif2, and 7w, are the energies of the
biexciton and the exciton production, fick is the photon energy, g(k,q)is the matrix
element of the optical conversion of an exciton into a biexciton, and V is the volume
of the system. Since the oscillator power of the exciton-biexciton conversion is much
greater than that of the exciton transition,'**' we shall not examine the transitions of a
crystal from the ground state to the excitonic state. We assume that the binding energy
of the biexciton is sufficiently large, as in the case of the CuCl and CuBr crystals and
that the M and 4 bands are separated sufficiently well. Since the states of the excitons,
photons, and biexcitons are assumed to be macrofilled, we replace the operators by the
time functions.

On the basis of the Heisenberg equations of motion for the operators, we obtain
two independent first integrals of motion, which connect the concentrations of the
biexcitons n,, excitons n,, and photons 7, :

na + nb = const, na + nc = const . (2)

Introducing the amplitudes and phases of the corresponding functions (a = Ae *, etc),
we obtain a set of second-order, nonlinear differential equations for the amplitude 4
and the phase ¢ of the biexcitons (henceforth, for simplicity we drop the wave-vector
indices of the operators and the values associated with them):
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FIG. 1. Polariton dispersion curves for optical tran-
sitions in the region of the M band of biexcition
luminescence as a function of the wave vector k of a
photon.
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where the dot denotes differentiation with respect to time.

Equation (3) allows steady-state solutions of the form

A = const, B =const, C = const, ¢);=—wp = const, (€]
where
1 1 5 5 —
Q,P=_2(Q+w+ck)i?\/(ﬂ-w—clr) +4g°(ny +n,). ®)

In the case of stationary excitation, Eq. (5) can be considered a polariton-type
dispersion law for optical exciton-biexciton transitions in the region of the M band,
which has two branches whose location and shape depend on the equilibrium concen-
trations of the excitons n, and photons #n_, i.e., on the excitation level of the crystal
(Fig. 1). It is assumed that in Fig. 1 the wave vector of the exciton q is given, the wave
vector of the photon k varies, and the wave vector of the biexciton is equal to the sum
of the wave vectors of the exciton and photon. The upper branch of the dispersion
curves represents the quasi energy of the biexciton and the lower branch denotes the
quasi energy of the photon plus exciton in the region ck + @ <£2. The maximum
splitting of the branches occurs in the actual region of the k space, where 2 — w = ck,
and its magnitude depends on the equilibrium concentrations of the excitons and
photons.

Equation (3) also has nonsteady-state solutions. Assuming that the resonance
detuning is equal to zero (4 = {2 — w — ck = 0) and the initial concentrations of the
excitons, photons, and biexcitons, respectively, are n,,, n,4, and n,,, we obtain the
following expression for the nutation frequency wg:
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where K (k) is the (total) first-order elliptic integral'® with the modulus k and n_;, and
Moax» Tespectively, are the minimum and maximum of the two expressions in the
parentheses; 0<n, <Ny, Mo +Mpo — Pin <Hp<Hy + My, and  ny + n
— Mpin <N, <4 + ny. The concentrations of the excitons, photons, and biexcitons
vary periodically with the frequency e, . One of the values, n, or n., decreases to zero
due to the oscillations, whereas the other oscillates above the constant background.
This is attributable to the fact that at #,,5n, only the smaller value determines the
additional number of the produced biexcitons. The nutation frequency @, depends in
a complicated way on the initial concentration of the system. At a constant concentra-
tion of the biexcitons, the nutation frequency is determined by the modulus of the
difference in concentrations of the excitons and photons 4n = |n,, —n,|. In the
neighborhood of 4n = 0 we have wy = 7g(n,,.,)"*/In[4(n,. /An)"*]. As An—0, the
nutation frequency decreases and vanishes and when An increases it increases mono-
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FIG. 2. Dependence of the nutation frequency of
the coherent excitons, photons, and biexcitons on
the difference in the initial concentrations of exci-
tons and photons at a specified initial concentra-
tion of biexcitons.
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tonically (Fig. 2). At n, = n_, the system is devoid of oscillations and the concentra-
tion increases monotonically from n,, to n,y + n,, and then remains constant. If we
set n o =MN,o €Ny OF By =N <R, 0, then we can easily obtain w, = 2g(n,, + n4)"? or
oy =28(n, + n,y,)"2, respectively, i.e., the nutation frequency varies as a function of
the larger concentration according to the square-root law. At n,, =0, Eq. (3) has a
simple solution
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where sn(x) is an elliptic function' with the modulus k. The nutation frequency, as
before, is determined by the larger concentration and the variation amplitude n, is
determined by the smaller concentration. The dependence of w;, on 4n is shown in
Fig. 2. As in Ref. 1, we define super-nutation in the system of coherent excitons,
photons, and biexcitons as a continuous increase of the nutation frequency with in-
creasing concentration of photons (or excitons).

At nonzero resonance detuning, the nutation frequency depends on the magni-
tude of detuning. This, however, does not produce fundamentally new effects as com-
pared with the case 4 =0.

It would be of particular interest to prove experimentally the predicted variation
of the nutation frequency as a function of the excitiation level of the crystal. An
increase of the exciton-biexciton nutation frequency (super-nutation) increases the in-
duced polariton transparency effect in the region of the M band of biexciton Iumines-
cence. In conclusion, we note that the coherent exciton-biexciton nutation effect is
much more abundant that the exciton-photon nutation effect or the nutation in the
two-level atoms.
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