Weak interaction effect in a heavy atom
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The effect of polarization of the electron shell of a heavy atom by a weak nuclear
charge on the effects of parity nonconservation is evaluated and expressed in the
form of an explicit function of the nuclear charge Z. The problem reduces to

amplification of the indioated effects by 10-20% (for bismuth).

PACS numbers: 31.30.Gs

The complexity of the situation that today surrounds the problem of existence of
the neutral “electron-nucleon” current calls for a reexamination of effects which fur-
ther complicate the picture of a heavy atom. The polarization of filled shells of an
atom by a weak nuclear charge, which alters the effective weak interaction between the
nucleus and valence electron pertains to this.!” Normally, polarization of this kind
leads to screening of the nucleus. If the same held also for the weak interaction, parity
nonconservation effects in a heavy atom would be suppressed and, at the least, the
divergence between the local results and those of the foreign accelerator and spectro-
scopic experiments would be eliminated.

The polarization effect (PE) in question was recently considered by Saakyan et
al."" by using accepted spectroscopic methods. The complexity of this approach (cum-
bersome sums over a large number of states, complex matrix elements, etc.) calls for
an independent, relatively simple and useful evaluation of PE for all heavy atoms. An
attempt to achieve this is made in our work by means of the Green’s function method
in conjunction with the quasi-classical approximation.
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/ FIG. 1.

FIG. 2.

1. Addition of a state with an opposite parity to the state of the valence electron
occurs due to the weak “electron-nucleus” interaction

V= ga(psdx) + §(x)p).

The corresponding matrix element (see Fig. 1 where the X indicates weak interaction)
equals a value of the function for x =0

W, (x) =igo (v, (xX) 4, (x) =g, (x) g4, (x) ) )

Lower-order PE which plays the principal role for Z» 1 is described by the dia-
grams in Fig. 2: interacting weakly with the atomic shell the nucleus excites the latter
producing in the process an electron and a hole; the latter annihilates with either an
excited electron (direct PE, Fig. 2(a)) or with an incident electron (exchange PE, Fig.
2(b)); the annihilation occurs via the Coulomb interaction (wavy line). In the analyt-
ical sense (see Ref. 2)

8 W, =-ifdld2d3iyg, (1) 6(2,3)¥(3) 63, 2)
@)
-9, (2)6(2, )W (3) 6(3, D17, (1,2) ¢, (),

where the first term corresponds to Fig. 2(a) and the second to Fig. 2(b), G is the
electron Green’s function, ¥, is Coulomb interaction, 1 = x,, ¢,, o,, etc.

Evidently, direct PE in the given case (in contrast to the spin-independent Cou-
lomb interaction) is nonexistent: the virtual pairs with opposite spins introduce oppo-
site contributions [Sp(c) = 0, see Ref. 1]. This immediately suggests that the PE will
not reduce but, instead, enhance parity nonconservation: direct PE would lead, as
usual, to screening and the exchange PE contains a minus sign (see Ref. 2).
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2. Proceeding with the calculation of Eq. (2)—which readily yields the original
equations in Ref. 1—we shall first rewrite it in the following form:

. dod 3k
SW‘“} =2ie 2f —_]g—r— f dxla’xzdx3

X g-ll;l(xz)exp(-—ikxz)cm(xz,xs) W(x,)G, (xy,x)explikx ) ¢ (x), (3)

where

G, (xx) =lo-H+id(H-p)]1"18(x-x",

where H = (p*/2m) + U is the Hartree Hamiltonian and g is Fermi energy. This
yields?’

Vp = O, (XD, _ o, ‘ o)
where

—21re2fdtfd a(,; —(H + H )+~— H, - d_)),

where H . = [(p,., + k)’/2m] + U and the operators p,,, act on ¢, ,, respectively.

3. The quantum numbers of states u, v and the parameter Z have large values
which hopefully suggests the applicability of the quasi-classical approximation corre-
sponding to substituting the corresponding classical momenta for the operators p, ,,. It
appears, however, that this yields only an order of magnitude estimate since, according
to Eq. (4), the small distance region (x ~a.,/Z, a, is Bohr’s radius) is important.

The quasi-classical result is as follows

1 ln{P
fap P/

0= -, ®
na -1
where
1
P = —.?—(p#—p’/ +t(p# +p)), K2=m(cy + e+ t(e#—cv)—z,;).

The component integral in Eq. (5) is bounded between the values 2 In( pa,)/p (p, and
p, are antiparallel) and 2 In*( pa,)/p (p, and p, are parallel), where p, =p, =p~Z/a,
. This yields the final value

InZ/Z < 8W, /¥, <W?Z/Z, (6)

the original result being most likely closer to the upper boundary. Numerically, for
bismuth (Z = 83) this yields 10 ~20%, a figure which appears to be in a reasonable
agreement with the results of Ref. 1.
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It appears useful also to evaluate by means of the discussed method the PE in the
hyperfine level splitting (see Ref. 3). The relationship of the type in Eq. (4) with the
same value O also hold in this case. The estimate of the PE in the hyperfine splitting of
the order of 10 -20% is compatible with the divergence between the experimental and
calculated (single-particle approximation) data.

The results given above substantiate the conclusion that the heart of the problem g
in the situation involving neutral currents is not associated with the theory of the
parity nonconservation effect in an atom but instead lies in the purely experimental
plane.

The authors thank A.A. Komar for numerous discussions and I.I. Sobel’man for
making his manuscript"’ available to us prior to publication.

U Another effect of the same kind is the Coulomb polarization of the electron core in the matrix element of
the dipole transition moment which appears as screening (see Ref. 1 where citations are made to references
dealing with the problems under consideration).

2’Equation (4) is written in a simplified form [without auxiliary terms not having a large logarithmic factor,

see Eq. (5)}.
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