On the possibility of a current state of an excitonic dielectric
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We show that in the case of an excitonic dielectric model it is necessary to
redetermine an expression for the current, otherwise a contradiction occurs. We
conclude that a current state of an excitonic dielectric can not occur.

PACS numbers: 77.90. 4- k

Volkov and Kopaev! showed that (in an excitonic dielectric) under certain condi-
tions a state involving a non-dissipative current is possible.

In this article we show that this effect disappears in subsequent examination of
this question using a simple model.

In fact, the authors' reasoning reduces to the following. The eigenstates of an
electron in the excitonic dielectric have the following form:

Vi = up ¥y + vp Yy, (1

where ¥,, and ¢,, are the electron eigenfunctions with quasi-momentum k in the
original, undisturbed bands (conduction and valence). It is assumed that ¢, , satisfy
the Shroedinger equation with the periodic potential:
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When the well-known formula is used to calculate the current

s 1 A
Yo = 3. @W*py + cc ) €))

(b= — iV) the interference of ¢, and ¥, in the state with wave function [Eq.(1)] gives
rise to, among others, a contribution which shall solely interest us; its magnitude is

1 N A
fig = —i—'m—{(zv!/ll* PY, + u3¢; py,) +cc} @

(here and further the index k is omitted). The non-dissipative current’ constitutes the
current j,, averaged over coordinates.

This leads to a contradiction: the continuity equation does not hold for the state
in Eq. (1) if Eq. (3) is picked to represent the current. This may be ascertained as
follows. The parameter div j,, may be calculated taking into account the fact that the

function

¢ = ut/lle—ifl‘ + vl/rze-i‘fzt
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constitutes a solution of the time-dependent Shriedinger equation with the Hamilton-
ian H,; we shall write the continuity equation for this state [naturally, including the
current in Eq. (3)] and set to zero the coefficients of exp{ + i( £, — &,)¢ }. Combining
the resultant expressions we get

div iy, + (& ~&) luvygry, - cc 1=0, )

It may be readily established that the second term in Eq. (5) is, generally speaking,
nontrivial. We should exphasize that Eq. (5) constitutes a simple property of the
solutions of the Shroedinger equation.

In the case of the steady state [Eq. (1)],  [¢| /3t = 0, while div j=0 [see Eq. (5)]
so that there is an obvious contradiction, the continuity equation is not satisfied.

In order to understand what is happening, we shall consider the simplest model of
the excitonic dielectric with an effective Hamiltonian (for singlet coupling):

+
H =% Enpomia g + lAafiay + Koo}, 6)
kyn=1,2 k

where the operators a,, and a,, pertain to conduction and valence bands, respectively,
A is the order parameter, and the energy in the isotropic case is

B2 g2 Y
§1k= 2m, v €gp =T 2m,

Evidently, a mode of this type [if we take into account an insignificant constant
term dropped from Eq. (6)] is equivalent, after self-consistent determination of 4, to
the BCS model; in any case, it correctly describes the equilibrium properties of the
ordered phase. This type of Hamiltonian may be treated as conventional, i.e., we may
consider 4 a fixed quantity and not be concerned with its origin and means of determi-
nation (in particular, it is unimportant whether the phase is fixed or not). As long as
we are dealing with equilibrium properties, there are no doubts concerning the correct-
ness of the obtained results.

The single-electron eigenfunctions of the Hamiltonian [Eq. (6)] are functions of
the type of Eq. (1), for which # and v may be expressed as follows:

u2=_1_ 1+ f '1)2‘__,_1__ 1;-—.—-5_—__'
e 4 (10 ) 2( vanral

)
wlvlm s e oo, 6= g A, 6= Lgmgy,
2VE2 + |A]2 2

Here, the upper (lower) sign pertains to the upper (lower) reconstructed band and the
corresponding energies are E = [(&, + £,)72] + (€2 + |4 |HV2
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In order to obtain the continuity equations we shall write the single-electron wave
equation that corresponds to the Hamiltonian [Eq. (6)]:

. 9y y
t—a-t-—=ﬂ.,l/f + K, 8)

where upon determing I/K'\z/J(r) = fdv'K (r,/"W(r),

Kirye')= DSy (1) 9%, (') + A*2dgp (1), (r7)- ©
With the aid of Eq. (8) we get the following equation of continuity:

| yl? s , " .

T + divi, + i (¢* Ky =y K*y*) =0, (10)

For the steady state [Eq. (1)], Eq. (7) yields Eq. (5) and the contradiction is eliminated.

Thus, as soon as we assume that the state of an electron in the excitonic dielectric
is described by a wave function [Eq. (1)] (which is the result of a mean field approxi-
mation), we arrive at the wave equation [Eq. (8)] and the continuity equation [Eq.
(10, i.e., an expression for the current that is different from Eq. (3). Specifically, the
current density

=, +i,.divi, =i(y* Ky-yK*y*), (11

where j, is given by Eq. (3). With regard to an equation for j,, it may be analyzed
similarly to the corresponding equation of electrostatics. The derivation of an expres-
sion for an averaged parameter {j, > is relatively simple. For the states given by Egs.
(1) and (7), the mean “charge” in Eq. (11) is trivial and the mean “dipole moment” of
a unit volume (“polarization””) % -0 (if the corresponding condition is satisfied as
proposed in Ref. 1). The “electric field” {j, > = — 477 ; moreover, we get the follow-
ing for the state in Eqgs. (1) and (7):

<j,> -—fl/—-(lulz—lvlz){Afdl'!/lz*r!/ll—'C-CJ (12)

(V is volume). A comparison with the averaged value {j,, > shows that
{J1> + <G, > = 0 [in this case we must use the known relationship between the matrix
elements of momentum and the coordinate (p,,/m) =i( &, — &,)ry, ]

An alternate approach involves looking at velocity instead of current. The veloc-
ity operator is:
A

r =i(Hr -t H) = +£(I€r—rl€)' (13)

m
The calculation of the mean value {f) in the state described by Egs. (1) and (7)
again leads to realization that the interference part of (§/m)> and the mean of the
second term in Eq. (13) mutually eliminate each other.

Thus, the interference part of the current reduces on the average to zero and the
expression for {r) is simply
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. k
<r> = —|uf? - —k—\viz,
ml m2

which coincides, as can be readily shown, with JE /dk, which was to be expected.
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