The form of rapidly-moving electron-hole drops
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We show that as a consequence of interaction with the lattice an electron-hole
drop moving in a semiconductor should collapse without limit when its speed
approaches the speed of sound.

PACS numbers: 71.35. + z

Electron-hole drops (EHD), deform the semiconductor around them. This inter-
action—described in terms of a deformation potential approximation—Ileads to the
following effects; attraction of EHD to the crystal surface;' loading of a moving EHD;?
sharp radiation braking in the case of drops crossing the sound barrier.>? A moving
EHD undergoes an opposite effect from the lattice’ at low velocities V¢S (S is speed of
sound in a semiconductor) EHD should shrink slightly in the direction of motion. As
we shall show below, an EHD should collapse without limit as it approaches the sound
barrier.

For the sake of simplicity we shall consider a semiconductor to be an isotropic
medium. We shall also neglect the effect of phonon wind on EHD shape (as was
shown in Ref. 4, this is acceptable provided the EHD radius is relatively small,
R, 510 ~* cm in Ge). In the isotropic approximation EHD interacts only with the
longitudinal field rot u = O [where u(r,t) is the displacement of an atom at a point (r,?)
from equilibrium]. Therefore, we shall write the following lattice and EHD
Lagrangian

2
d S2
L= LEHD+ f%(_;;_:-) - "pT (divu) 2 = Dndivu dsr, Q)

where Ly is the free EHD Lagrangian, p is the crystal density, S is the speed of
longitudinal sound, D is the deformation potential constant and n(r,?) is the carrier
density in EHD.

We shall assume the EHD velocity V to be fixed and the electron-hole liquid
(EHL) contained in it to be incompressible with a density n,. The latter approxima-
tion is applicable if the EHD-lattice interaction is weak in comparison with the EHL
binding energy (a condition highly satisfiable in Ge-type semiconductors). In this case,
Eq. (1) represents a functional of derivatives of the deforming field and drop shape.
The condition of least action for Eq. (1) yields equations for determining the field u
and drop shape. The latter; as may be shown, expresses an equality at the EHD surface
between the internal pressure and pressure due to surface tension forces. However,
such an equality is extremely complex. To obtain a qualitative picture we shall assume
that a drop has the shape of an ellipsoid of revolution (around the direction of motion,
in accordance with the axial symmetry of the problem) with a volume ¢7R § = $ma’h,
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where R,, is the mean EHD radius and a and b are semiaxes of the generating ellipse
across and along the axis of rotation. In view of the fixed volume this class of surfaces
will be singly-parametric (the ratio of semiaxes v =a/b is a convenient parameter)
with the surface equation |r| =R, (@), where 8 is the polar angle with respect to
direction V. Thus, the density » in Eq. (1) may be expressed as follows:

1, x>0
n(r,t) =n 8(R () —{r-Vi|), where 8(x) = . )
0, x<0
The Lagrange equation for u has the following form:
1 . a2 Dno - v
(A—-é-é -a—tT)ﬂ = - Psz V@(RV(G)-II'— ll)- (3)

If we substitute the solution of Eq. (3) into Eq. (1), the action for Eq. (1) will
become a function of v. It can be readily shown that as a consequence of Eq. (3), the
problem of least action is equivalent to the problem of least action for Eq. (1) for
independent v and u. Direct calculations show that such a problem is in turn equiv-
alent to a problem of finding in terms of v the sum of the potential energy of a free
EHD and one-half its energy of interaction with the lattice. If forces which cause EHD
motion and EHD and lattice friction are of the same kind within a drop, the surface
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FIG. 1. The dependence of E on the ratio of
semiaxes v of drops with radius R, = 6R_ for
different mobility rates (curves from top to bot-
tom: 8= 0.3; 0.5; 0.6; 0.7; 0.8; 0.9).
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FIG. 2. The dependence of the ratio of se-
miaxes v on the speed 8 = V /S for drops of
different mean radius: 1-R;, = 3R,; 2-
R, =6R, 3-R, =9R_; 4R, = 12R..
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energy is the only part of the potential energy which is shape-dependent in the steady
state. The equilibrium value of v, is subsequently determined from a condition on the
energy minimum

E =aS + 2.2'.'.°f 8(R,(6) ~|r —ve|)diva d°, @

where a is the coefficient of surface tension, u, is a solution of Eq. (3) for a given v and
Seun is EHD surface area.

The integral in Eq. (4) is calculated by means of the Fourier transformations in
Egs. (3) and (4). We also use the known formula for the surface area of an ellipsoid of
revolution. Thus,

. 2_1~B%2F_(B,v)

_E_ =2/3, p~1/3F (1) 4 l v B 2 B.v , )
27R?% a 1 3 2 2.2

o véi~1-8%
where

i

arc sin y1 = v2/y1-v 0<v<l,
Fl = v+ \/v2—1 -

ln /2\/1/2-1, 1< VvV,

v-vi-1
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F, =4 - 1 .
“arc tgv(1 - Bp? 1 /\/(1-¢Bz)v2-l, <wv.
\

v1-8?

y=R /R, R, =aps?/(Dn, )% in Ge R, = 10~ cm.

Figure 1 shows the typical behavior of E as a function of v for different drop
speeds. As the speed increases, the position of the maximum is displaced in the direc-
tion of larger v. Results of the numerical calculations of v, as a function of speed for
drops of different sizes are shown in Fig. 2 Equation (5) may be used to obtain the
asymptotic behavior of v, for f—1, namely v, ~({7yB?*’(1 — 3 ' As EHD
approaches the sound barrier, it should collapse without limit.

It should be noted that as f— 1, the energy E~ — (1 — ) ~ "> . Thus, at high
(V'=S) speeds the condition for the applicability of the incompressibility approxima-
tion is violated. Equation (2) is also known to be not applicable when the thickness of a
collapsed EHD is comparable to the washing-out of its boundaries ~ 10 — ¢ ¢m. Final-
ly, instability may develop in a collapsed EHD (due to, say, phonon wind) which may
cause its break-up. In any case, the question whether an EHD may reach the speed of
sound is highly problematic in the light of available results.

The author thanks L.V. Keldysh for great help in the formulation and solution of
the problem.
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