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Instanton-type solutions are found in two-dimensional super-symmetrical chiral
models.

PACS numbers: 11.30.Rd, 11.30.Pb

Recent works!™ deal with the study of two-dimensional chiral models both in the
pseudo-Euclidian'? and Euclidean®” cases which generalize the n-field model.® In this
article we shall apply a number of results®™ to the case of super-symmetrical general-
ization of these models."’

It should be remembered that in the conventional Euclidean chiral theory the
field ¢ (x)(x = (x, ,x, )R ?) assumes a value in the nonlinear homogeneous manifold in
the ¢ orbit of an associated representation of a simple compact Lie group G: & = G /H,
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where H is a stationary subgroup of the orbit point. Moreover, orbit ¢ may be consid-
ered as a manifold that is naturally embedded in the algebra & of the Lie group G.
The embedding is given by fixing polynomials that are invariant with respect to the
associated representation

ij(¢) =c;, j=1,.0n, 1)

where n is the rank of group G.

In proceeding to the super-symmetrical case it is convenient to use the terminol-
ogy of super-space in which each point has conventional coordinates x, , x, and addi-
tional anti-commutative coordinates 6, (a = 1,2). We shall assume 6, = @, where
the asterisk denotes involution in the Grassman algebra (see Ref. 10 for the Grassman
algebra).

The involute relation of §, and 8, agrees in the Euclidean case with invariance
with respect to rotation; moreover, generally speaking, the two different formulations
of the problem coincide (solutions that are independent of time in the 2 + 1 theory and
solutions in the ! + 1 theory after a Wick rotation).

We shall determine the Dirac y-matrices and spinors ¥ and ¥ in the following

way:
0 1 0 -i 10
l= 2 = 5=
Y <_1 0), i’ <—i 0), Y (o _1>,

‘P=CZ+>» [ 1% ) 8’(25;)=(:*>, 8 =(6*,-0).

We shall refer to ¢; as the chiral superpole which corresponds to a field defined on
a super-space and which assumes a value in the Grassman algebra; moreover, this field
satisfies conditions of the type of Eq. (1):

@

A
Ppid)=cn  j=lom )
However, c is a numerical component ¢ of the field qf and it coincides with the
conventional chiral field.

In the case of a real superpole 45 (x; ,x,,0,0 *) the following expansion takes place:

A — 1 = v

¢-¢+8‘[’+?88F=¢+6*\{1-0¢++6*0E, 3)
where the fields = ¢ * and F = F * belong to ;the even and ¢, ¢ * the odd compo-
nents of the Grassman algebra.

Four independent displacements with respect to x, , x,, & and 6 * take place in the
super-space. The displacement generators may be used to construct super-transforma-
tion generators
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- d —_
E=.————i06, E*-—-g;;"Fia*a ’ (4)

where
9=09/3z = W9, ~id), F=0/0z=%0, +id), z=zx +ix, (5
and differentiation operators that are anti-commutative with E and E:

- ad -
D=_9_+i66, D=a- — -if*aJ. (6)
a6 96*

We should note that E and E correspondingly with D and D are “conjugated”
with respect to the form

< A4,B> =[d%d*x 4™ B, %)

i.e., for example
< A,EB> =(-1)s4 < E4 B>,

We shall assume that the field :;5 converges sufficiently rapidly to the limit ¢§0 as
|z} oo. The value of @ (topological charge analog) for such a field may be determined
from the following formula:

0 =c! fd20d%($, 1D ,D$1,), ®)

where (, ) is the scalar product in the Lie algebra &. @ assumes a value on an even
component of the Grassman algebra while ¢, the numerical part of Eq. (8), coincides
with the conventional definition of a topological charge.’ This may readily be seen if
Eq. (8) is expressed as a sum of components and the appropriate integration is carried
out with respect to 9 and 6 *.

Q= o™ [ ick U, (3, 8, 3,61 + 3(¥Y%E F) + illg, T, 45, ¥)

_ ©
+ 2 (PyH Y, 3#¢) b, wv=12.

The work (energy) functional for the chiral field may readily be generalized for
the super-symmetrical case.?

1 A A - n
$ = — [d%04%:((Dg, D§) — (16,561, (4. DD 1. (10)

In our case “duality equations” play an important role as is the case in the chiral
theory

A A A -n A =N
D¢=[¢,D¢]) D¢ ‘=—[¢,D¢]- (11)
It may readily be shown that the “equations of motion” (Euler’s equations) which
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follow from the condition 65 = 0 and allow for the conditions in Eq. (1'), are satisfied
when the conditions in Eq. (11) are also satisfied. It can be also shown that as in the
case of the conventional chiral theory, in the super-symmetrical case a consequence of
the duality equations is

S=cQ, (12)

moreover, ¢, the numerical part, yields a precise lower bound value for the work S, and
the Grassman part is equal to the value of work at a fixed point.

In conclusions, we shall examine in more detail the super-symmetrical generaliza-
tion of the chiral theory where the field ¢ (x) takes on values in the complex projected
space:® = CP".>* In this case, the superpole ¢ may be expressed in terms of a (n + 1)-
dimensional vector i = (4 ",...,.i "+ ")

A 1 5 A A , 1 1 3
Pap = 777 % " tatp @ Bmlon nrl a3
where

A ,

by =, + g, - GX: + 0% 6F (14)

and it satisfies the following condition

A oA Aa
w,u)= = v g =1, (15)

while the fields «, #,, y, and F, satisfy additional algebraic conditions

—_ . -> —_— —_— - - - >y

(uyw =1, (xu) +(uyg) =0, WF) +(Fu)-(¢g*¢) +(Xxx)=0.
(16)

In this case expressions for .S and Q are as follows:
S = [d?6d%x (5‘3, 'D:l) + (56, D‘fl_) + (ﬁ, ‘136)(?-1,- 'Dle) + (ﬁ, '5:—1)‘(111\, ID;lﬁl)}
an
A _a A b N . A A A=A
Q = c-1fd?0d*x{(u, Du)(u, Du) - (u, Du)(u, Du) - (Du, Du) - (Du, Du)},
(18

and the duality equations
A
A A= A - A
Du=u(uDu), Du=-u(Du). (19)
The use of inhomogeneous coordinates

A : X
wi =gl oum*hy=1 o1, .., 0 (20)
converts the duality equations to the following

406 JETP Lett., Vol. 29, No. 7, 5 April 1979 AV. Mikhailov and A.M. Perelomov 406



Dwi=0 (or Dwi=0), j=1..,n. @1)
The solution of these equations is
witxy, x,, 0, 6%) = wi (z) + 0 (z), 22)

where w/(z) and i57(z) are analytical functions of z over the entire plane z, including the
infinitely-distant point and, therefore, are rational functions; moreover, w’ assumes
values on the even and @’ on the odd components of the Grassman algebra.

It may be shown (having introduced appropriate coordinates) that a similar asser-
tion also holds for the case where the field q§ is such that ¢, its numerical part, takes on
values in the orbit of an associated representation of an arbitrary compact Lie group,
and in particular, for the case of complex Grassman manifolds i must be represented
by a N Xk matrix U+ U= 1.

"The super-symmetrical generalization of a conventional n-field is treated in Refs. 7 and 8; for the pseudo-
Euclidean case, the super-symmetrical generalization of chiral models was studied in Ref. 9.

'V.E. Zakharov and A.V. Mikhailov, Pis’ma Zh. Eksp. Teor. Fiz. 27, 47 (1978) [JETP Lett. 27, 42 (1978)].
*V.E. Zakharov and A.V. Mikhailov, Zh. Eksp. Teor. Fiz. 74, 1953 (1978) {Sov. Phys. JETP 47, 1017
(1978)).

*V.L. Golo and A.M. Perelomov, Lett. Math. Phys. 2, 477 (1978).

‘V.L. Golo and A.M. Perelomov, Phys. Lett. B79, 112 (1978).

*A.M. Perelomov, Comm. Math. Phys. 63, 237 (1978).

*A.A. Belavin and A.M. Polyakov, Pis’ma Zh. Eksp. Teor. Fiz. 22, 503 (1975) [JETP Lett. 22, 245 (1975)].
'P. Di Vecchia and S. Ferrara, Nucl. Phys. B130, 93 (1977).

*E. Witten, Phys. Rev. D16, 2991 (1977).

’A.V. Mikhailov, Pis’'ma Zh. Eksp. Teor. Fiz. 28, 554 (1978) [JETP Lett. 28, 512 (1978)].

“F.A. Berezin, Metod vtorichnogo kvantovaniya (Secondary Quantization Method), M., Nauka, 1965.

407 JETP Lett., Vol. 29, No. 7, 5 April 1979 A.V. Mikhallov and A M. Perelomov 407





