Localized topological solitons in a ferromagnet
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We show that topological solitons which are localized in three dimensions may
exist in a ferromagnet. A soliton corresponds to the Hopf invariant; soliton size is
stabilized by the law of conservation of the number of spin deviations.

PACS numbers: 75.10. — b, 75.25. + z, 75.30.Ds

Earlier studies of ferromagnets have dealt with either solitons that were nonloca-
lized in three dimensions (domain walls, “hedgehogs,” see Ref. 1) or localized non-
topological solitons.'” Localized solitons correspond to a homogeneous distribution of
magnetization at infinity M (r). Consequently, topological soliton analysis involves
studying the properties of transformation of a 3-D space {r} with identically infinitely-
distant points (which is equivalent to a 3-D sphere S°) onto a 2-D sphere m* =1,
where m = M/M,, M, is the saturation magnetization. We know that the S transfor-
mation corresponds to the Hopf invariant Z which takes on integer values. The Hopf
tranformations may be easily constructed (see Ref. 3) having constructed transforma-
tion {r} onto a set of 3-D deflections OeSO(3)-degree of Z, such that that 0, —9$,, for
|[r|—>« and having operated O on the vector m(e) = Z. Transformation with
Z = + 1 corresponds to

m=2cos2 ¥ +l‘1(ﬁ2)(1—cos2X)+[l‘1,£]sin2X, )]

where R(#) spans a unit sphere for the case of vector f spanning unit spheres y = y (7,6)
x (0,6) =7, y(0,0) =0, where r and 6 are the spherical coordinates. The form of R, y
is determined by minimization of the ferromagnetic energy W {m} with allowance for
Eq. (1). Even in the simple case ofian isotropic ferromagnet

¥ im} =(aM2/2) [ (ym)idr, @

where a = (Isq2/2 HoM,), I is exchange integral, s is atomic spin, g is lattice constant,
equations for R, y cannot be integrated. However, these equations are of the automo-
del-type, i.e., the form of the solution depends on an arbitrary constant R which
characterizes the soliton dimensions. The solution asymptotes are as follows

A A » "—‘(r/R)) r-0,
R(r) »tr at Z =121, X(r, ) = 3)
XO(R/r)Z. r o+,

i.e., the soliton energy is proportional to R. However, magnetization dynamics equa-
tions contain an important motion integral—the number of spin deviations S, {m}

S,=(M /2p ) [(1—m )dr. @
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FIG. 1. Dependence of soliton energy on S, ; continu-
ous spectrum region is shown cross-hatched; E>¢€,S,.

S Sz

A solution of Eq. (1) also calls for a nontrivial value of the moment of the magne-
tization field impulse L; however, L is expressed in terms of S,, namely
L = — (#ZS,)z. By fixing S, we thereby fix R and prevent a soliton collapse. It may
be easily shown that

Szf\,s{R/a)3 or RNa(Sz/s)lé. (5

If we express the soliton energy by S,, we get (see Fig. 1)

E~sl(s25,)%. ©)

Dissipation of soliton energy and the associated decrease in S, i.e., R, may only occur
as a result of the slow process emission of magnons with momentum #k and energy
€(k ). Since this process is possible at €(k )<(dE /dS,), i.e., kS 1/R, and its amplitude is
proportional to I (ak )?, the soliton lifetime r = S, /(dS, /dt) at S, s being large com-
pared to I /#

r~(1/ks )(s /S )%, )

We should note that in addition to the static solutions of the form of Eq. (1), the
equations permit time-dependent (but stationary from a quantum-mechanical view-
point) solutions that contain the topological charge, in which magnetization precesses
around the z-axis at a fixed frequency w,", i.e.,

A A A A . .
R =R, (), R+ iRy =RM(G)e-twt o m, +im, = mM(r)e-twt,
(3
The solutions correspond to a mimimum of the function [W {m} + %S, ], see Ref. 2,

for which y ~(1/r) exp[ — V' w/ 2au,M,] for r— . The question concerning which
value of @ coresponds to a soliton energy minimum for a given value of topological
charge Z and S, remains open."’

We shall take into account the energy of the magnetic anisotropy
W, {m} =(pM2/2) [(1 -m? )dr. )

This gives rise to the appearance in the problem of a characteristic length
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FIG. 2. Soliton shape for R»x,. Arrows indicate
direction of magnetization at certain points out-
side and inside a torus and at the center of do-
main boundary.

xo = (a/ B)"*»a which has the sense of the 180° thickness of the domain boundary.
The effect of anisotropy is significant only for R R x,; in particular, the asymptotics of
Eq. (3) change: y (r)~(1/r) exp( — r/x,) for r— . At Ry X, an energetically favored
magnetization configuration is one for which there exists in a soliton a region with
volume R 3»x} where m, ~ — 1. This region contributes to S, without contribution to
the energy (see Egs. (3), (9) and (4)).

A soliton of this type and allowing for Eq. (1) may be constructed, assuming that
the above mentioned region is shaped by dimensions R, R»x, and it is separated from
the remaining portion of the magnet by the domain boundary (see Fig. 2), i.e., at R>X,
(or at S,>S, = s(x,/a)’) the problem again becomes scale-invariant. Having evaluat-
ed E and §,, we get

E~oR? + sI(R/a), S, ~ s(R/a)® =5, (R/x )% (10

where o is the boundary energy density, o =2 (a 8)* M}, the second term in E is
associated with the inhomogeneity m at the boundary center and it is imposed by the
topology (see Eq. (1)), however, it is small at R>x,. Using Eq. (10) we get

E~ve (S25,)Y° at §, >>5, , 11)

where €,=2pBM, is the magnon activation. Since (dE /dS,)~€(S,/S,) <€,
magnon emission is forbidden energetically. Soliton energy dissipation at S, 2 .S, may
only occur due to processes which fail to conserve S, ; for example, processes depen-
dent on a weak dipole-dipole spin interaction. One of the authors (B. Ivanov) thanks
A. S. Kovalev for fruitful discussions.

"'"The problem of continuity of the derivative of the solution for a fixed o also remains an open question.
Derivative discontinuities at the surface |r| ~ R occur in the analysis of certain spherically-symmetric trans-
formations; however, they present no significant difficulties in the analysis.” In our case the symmetry is
lower (axial) and there are reasons to assume that there exists a solution with a derivative discontinuity m
only on the line or even only on a point (for r—0).
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