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The equations for the renormalized group, which describe the superfluid phase
transitions in liquid He®, are derived and solved (on the computer). It is shown
that the interaction of the critical fluctuations of the order parameter increases
the region corresponding to phase A in the phase diagram of He”.

PACS numbers: 67.50. — b, 64.70.Ja

It is known that liquid He® at temperatures below 2.6 mK can exist in two
superfluid modifications. One of them, which is characterized by an anisotropic gap in
the spectrum of elementary excitations (phase 4 ), was studied theoretically for the first
time by Anderson and Morel.'” The other phase, which has a spectrum with an
isotropic gap (phase B ), was described by Balian and Werthamer.™ They also showed
that in the weak coupling approximation, i.e., in terms of the BCD theory, only phase
B is thermodynamically stable below the superfluid phase transition point. To explain
the existence of phase A at pressures above 21 atm, Anderson and Brinkman"' went
beyond the weak-coupling approximation and took into account the renormalization
of the peak due to the spin fluctuation exchange. It was found that the paramagnon
exchange indeed stabilizes the 4-phase and allowance for the sixth-order invariants in
the free-energy expansion makes it possible to understand qualitatively the structure of
the phase diagram of liquid He® as a whole."”

The Anderson-Brinkman theory as applied to the superfluid phase transitions in
He? is analogous to the Landau theory in the sense that it ignores the critical fluctu-
ations of the order parameter. These fluctuations can be legitimately ignored if the
Ginzburg-Levanyuk parameter for the system under consideration is small, which is
usually attributed to the relatively weak interaction responsible for the phase transi-
tion. In the case of liquid He?, however, the effective interaction apparently is suffi-
ciently large, since the BCS theory is not applicable here and hence the Ginzburg-
Levanyuk parameter for the superfluid phase transitions must be relatively large. The
importance of the critical fluctuations of the order parameter is indicated by the re-
sults of recent experiments on absorption of the zero sound in a normal He? in the
neighborhood of the transition of the superconducting state.'> Therefore, a question is
raised concerning the role of the critical fluctuations in determining the super-fluid
phase transition to He® and in forming its phase diagram. The purpose of this commu-
nication is to determine this function.

We use the following fluctuation Hamiltonian, which describes the superfluid
transition in liquid He®:
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Here ¢,,(x) is a complex tensor field of the fluctuations of the order parameter, where
the first index of ¢, is the spin index and the second is the orbital index. The param-
eter f determines the anisotropy of the fluctuation spectrum and 8 (a = 1,2,3,4,5)
play the part of the priming coupling constants. The spin-orbit terms in Eq. (1) were
dropped because of their smallness.

To determine the critical behavior of the system, we must have the equations for
the renormalization group (RG), which control the evolution of the physical charges
B, at T—T.. Since the structure of the ordered phase is not determined by the magni-
tudes of B, but rather by their ratios, it is sufficient to analyze only the equations for
these ratios. As the sought-for functions it is convenient to select linear combinations
of the ratios S8,/8, (a = 2,3,4,5), which appear in the conditions of thermodynamic
stability of the phases 4 and B '

v=_8_2’ x=64+ﬁi y=ﬁ’ = 35—335 (2)
8, 8, B, 28,

The full set of equations for the RG will be derived and analyzed in another paper.
Here we would only like to point out that the theory can be radically simplified if the
anisotropy of the fluctuation spectrum is ignored. At the same time, allowance for the
anisotropic term in the Hamiltonian (1), as the estimates show, should not substantial-
ly influence the results. Therefore, we use the equations for the RG obtained at f= 0.
In the lowest (parquet) approximation they have the form:

dv 2 2 2 2 -
= =-—Bl[7v +3x° +3y° + 827+ 10 vx - vy ~ 16vz - 2xy - 8xz
+8yz—5v+4+4vy(y+2z)] ’

dx 2 2 2

= =- B l4x° +7Ty° +82% - 8xy - 8xz + 8yz - Bx + 8y - 4xy (v + 22)],
dy 2 2
T =~ B;[-15y% - 24yz + Bxy + 4x - Oy - 4y%(y + 22)],

t
dz i
— == Bz 8x - 14y - 222 - 13 -4y (y + 22)], t=c/k.
dt 3)
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FIG. 1. Projections on the x-y plane of the three-di-
mensional phase trajectories of the RG equations (3).
The straight line fixes the limits of the stability zones
a2 of the phases 4 and B. The crosshatched area repre-
sents the boundary of the stability region of the Ha-~
miltonian (1). The numbers on the curves are equal to
o the corresponding values of the parameter &.

FIG. 2. The phase diagram of He® taking into account
the critical fluctuations. The letter N denotes the exis-
tence domain of the normal Fermi liquid. The heavy
broken line represents the boundary of phase 4 in the
Anderson-Brinkman-Serene theory; § (P,) = 0.25 and
8(P)=0.17.

Here « is the inverse correlation radius and the constant ¢ > 0. As can be seen, the last
three equations form a closed system, which has eight fixed points along which there
are stable nodes. However, Eq. (3) on the whole does not have stable solutions, since
[v]—>o0 as k—0, regardless of the evolution of x, y, and z. Here the sign of dv/dt is
such that the fourth order in (1) loses definiteness for any initial values of 8,. Thus,
the superfluid phase transition in He? in principle must be a first-order transition.

Let us assume that the initial values of B, coincide with those which the Ander-
son-Brinkman®™ paramagnon theory gives:

BY) =-(2+8)8, B =-28(7, B --(2-8)8,

B = {2+8)8), Y < 0. “)

How does the ratio of the constants 5, vary under the action of the critical fluctu-
ations and how does the value § influence the structure of the low-temperature phase?
The answers to these questions are given in Fig. 1 which shows the x-y projections of
the three-dimensional phase trajectories [x(z), y(¢), and z(¢ )] of the equations for the
RG, which begin on the straight line parametrized by Eqgs. (4). It also shows the range
of the parameters x and y within which the phases A and B, respectively, are stable and
the boundary of the stability region of the Hamiltonian (1). It can be seen in Fig. 1 that
at 5 «0.17 and 6 > 0.25 the phase trajectories of the equations for RG cross the bound-
ary of the stability region of the Hamiltonian in the same zones in which they origi-
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nate. Apparently the fluctuations of the order parameter do not change the ratios of
the free energies of the phases 4 and B.

Such a variation occurs, however, at 0.17 <& <0.25. In this case the phase trajectories,
which begin in the stability region of phase B, go to the stability region of phase 4,
which indicates that phase A4 is stabilized by the critical fluctuations. If § is in the
range of 0.17 to 0.25, first a transition to phase A occurs in the system and then as the
temperature and the fluctuations decrease this phase is replaced by phase B by means
of a first-order phase transition.

As is known, the parameter of the paramagnon coupling § increases with pressure
P. It follows from this that the P-T diagram of the liquid He’ should have an addition-
al stability region of phase 4, which is adjacent to the region described by the Ander-
son-Brinkman-Serene theory' and which has the shape of a beak, as shown in Fig. 2.
The characteristic width of this “beak” apparently does not exceed the width of the
critical region. It is curious that the appearance of a beak in the phase diagram of He?
is not connected with anisotropy of the critical-fluctuation spectrum, as is the case for
cubic and tetragonal crystals with dipole forces.”®

I sincerely thank E.B. Sonin for stimulating discussions, for discussion of the
results, and also for collaboration during the initial stage of this work.
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