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The oscillation spectrum of linear defects is examined. The possible solutions of
(g 0) = 0 corresponding to the instability are investigated. The nature of the
instability and the possibility of a structural transition are analyzed. The results
are used to analyze the spin-lattice relaxation and the variation of the electrical
resistance and specific heat.

PACS numbers: 61.70. — r, 63.20.Pw

The presence of linear defects in the crystal lattice may lead to formation of
phonon modes which are localized in the plane perpendicular to the defect.!” Their
spectrum is determined by the equation
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Here G o(n, %) is the time and space (with respect to the coordinate along the line of
defects and g is the corresponding wave vector) Fourier component of the Green’s
function for an ideal crystal and U, is the defect-induced perturbation, which is as-
sumed to be localized in the dislocation atoms [Lifshitz-Kosevich model,’’ n, =0 in
Eq. (1)}. The advantage of this is that G J"” is a tensor of second rank for the indices y8
and like UJ7, is diagonalized when the defect line is selected along sufficiently sym-
metric directions. The bound states of interest appear at U, <0, which corresponds to
a decrease in interaction of the defective atoms with each other (or with the neighbor-
ing matrix atoms) as compared with the interactions in the matrix. An analysis of the
dispersion equation shows that in the harmonic approximation the w?(g) spectrum
softens (as compared with the undistorted dispersion law) and at perturbations |U, |
exceeding a certain characteristic value a “roton” collapse occurs and o becomes zero
at ¢ = ¢*0. In this paper we investigate the “roton” singularity and instability at
q = q* and their manifestations in certain physical effects.

First, we analyze the possibility of solving Eq. (1) with ®*(g*) = 0. To do this, we
use the model of the cubic crystal with the interaction of the nearest neighbors and the
defect line along the [100] direction. We obtain from Eq. (1) at w* =0 (for any
¢ 2= £0):
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where AP /P, is the relative variation of the force constants, '7(is the total elliptic
integral, and a is the lattice constant. The value A4 characterizes the perturbation
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(U, ~A4x). Figure 1(a) is a graphic solution of Eq. (2) and Fig. 1(b) is a solution of an
analogous equation for the [111] direction of the defect. There are solutions at A>A4,
[for Eq. (2) A, = 1.85), i.e., the spectrum w* (g #0) = 0 becomes unstable. The depen-
dence of g* of the corresponding 4. on the orientation of the defect is typical: if the
maximum wave vector along the defect g, falls on the surface [as in Eq. (2)] or on the
edge of the Briliouin zone, then ¢* = g,, ; if however, the defect is oriented in such a
way that gq,, falls on the peak of the Brillouin zone, then ¢* <gq,,.>

To obtain the dependence w*(g) in the instability region, we must obtain anhar-
monic corrections for the spectrum. It is convenient to use the Green’s temperature
analogous to those described in Ref. 2. In contrast to the standard case, we now
consider the harmonic system of the defective crystal to be unperturbed. The self-
energy corrections due to the third- and fourth-order anharmonicity are:

s-Q +<>- Q)

The calculations using the Green’s function for the atoms on the defect line shown in
Ref. 3 give the following equation for the gap 4 * = 2 *(Q *) (the values given below are
dimensionless 2 = w/w,,, @ =49/9,,, t = T /0, and w,, and @ are the frequency and
the Debye temperature):

t/A, t >> A
A? =-9.§(Q*) +.a 1 . @
ln‘&‘ , t<<A

Here 22(Q*) is the seeding gap [(at A >A,) it is negative: 2(Q*)°=0N) = —472]
and a = @ /€, ~ 107 is the anharmonic parameter (€, is of the order of the atomic
energy); the numerical factors ~1 in Eq. (4) were dropped.

Since there are no phase transitions in the one-dimensional systems, we conclude
that 4 #0 (at T = O the transition is destroyed by the zero-point vibrations); the finite
quantity 4 2 describes the renormalized “roton” gap. The specific form of its tempera-
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ture dependence is determined by the ratio of the parameters ¢, @, and £2 2, the last of
which is connected with 4 in a rather complex way. The stuctural transition, however,
can occur in the presence of defects. The situation for a system of parallel defects or
those oriented along the crystallographically equivalent directions can be easily ana-
lyzed. In this case 4 on the right-hand side of Eq. (4) can be replaced by /4 * + ¢ (c is
the concentration of the defect lines), which makes it possible to have solutions 4 =0
and hence a structural transition .at . = v/¢(4 2/a)*. In the vicinity of the transition
A ~(t =1t,)" This transition is accompanied by a shift of the defective atoms and by
the formation of a superstructure on the line with a period 27/g*. As shown above, the
period can be doubled and in general increased incommensurably with respect to the
original, depending on the orientation of the defects. We note that the short-range
order can be determined at ¢>¢,: the correlator of the displacement of the defective
atoms
. 1 ‘ "y —=n;-!
< u(n,Jufn,) > A7 x exp (—-= —-————-——) ’
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where the correlation radius 7, = a4 ~' may exceed the length of the defect for suffi-
ciently small 4.

We used the Lenard-Jones model for interaction of atoms to determine whether
the values A > A can be obtained. If the spacing between the defective atoms is greater
than there would be spacing in the self-matrix, then the required values of A are
theoretically possible. Note that this parameter can be changed by an external load.

Our-model of structural instability can be used for impurity-atom chains which
locally vary the force matrix. We can also include in this the breaking and rearrange-
ment of some bonds due to introduction of dislocations. Specifically, an exchange
interaction, which contributes to A, take place between the “dangling” bonds.

We calculated the effects, contributed by the “roton” singularity to the depen-
dence T of the spin-lattice relaxation time of the dislocation chain of spins 7, of the
dislocation contribution to the electrical resistance p, and of the specific heat C,;. Let
us give some results. The spin-lattice relaxation is particularly clear namely because
the local phonons participate in it. Even in the absence of a “roton” gap in the spec-
trum the ordinary T dependence of the Raman scattering (7, ' ~ T'7) weakens substan-
tially and 7, ' increases. For a relaxation produced by a modulated exchange interac-
tion we have
%

: 3,2
rp = 0T, AT) xRk = () ©

A gap may yield a much larger contribution. In particular when
A>A AT)=V'102 ;> exp( — 2,/ ). There is both qualitative and quantitative [when
we set £2,=02, (Q*)~0.2] agreement with the experiment.’ The region in which
direct relaxation processes dominate is of interest; if @ <2, of (Zeeman frequency),
—1 2 21— 172
Ta ~2;-4%)" "
The “roton” part of the spectrum gives the following contribution to the electrical
resistance:
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(the effect of the long-wave part of the spectrum was investigated in Ref. 3). The
contribution to the specific heat at £> A4 is

C, = 3N A ™

r(T) =

(N, is the number of defective atoms). It follows from Egs. (4) and (7) that the ratio of
the atomic specific heats for the defect and the matrix is ~ 157 [do/at?]'>1 at
sufficiently low temperatures.
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"'The dispersion equation (1) in the nearest-neighbor model for the isotopic impurity chain was analyzed by
Tosilevskil.™ In this case, however, the perturbation is ~w? and thus the effects of interest are missing.

»'This is attributable to the fact that in the first case G (0,0°#0 and the right-hand side of Eq. (2) varies
monotonically, whereas in the second case GJ (0,0°) =0 [because in the calculation of G (0,»”) the
integration range of the G|, (w’) function for the transverse momenta degenerates for ¢ = g,, to a point]
and the right-hand side of function analogous to Eq. (2) has a maximum.
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