Nonlinear plane waves in the massless Yang-Mills theory
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A new set of solutions of the Yang-Mills equations, which are nonlinear massive
plane waves, is obtained and analyzed.

PACS numbers: 11.10.Np

1. Recently, it was indicated that the vacuum in the Yang-Mills theory, which
was examined in the perturbation theory, is not a true vacuum.""* Apparently, the
true vacuum is a coherent state of the gluon field with colorless excitations above it.

It is of crucial importance in this connection to find and analyze the classical
solutions of the Yang-Mills equations without the external sources in the Minkowski
space, which may prove to be useful for construction and study of the structure of
quantum vacuum and asymptotic states of the theory.

2. Let us examine the Yang-Mills field without the external sources, which corre-
sponds, for simplicity, to the SU(2) group in the Minkowski space.

The equations of motion have the form

a begb
G#G#V + ge® CAFG;V = 0, (1)

where
Gl = 9,47 =9, 45 + g(abCA;; Af

(the Latin letters correspond to 1, 2, 3 and the Greek letters correspond to 0, 1, 2, 3).
We seek a solution of Eq. (1) in the coordinate system in which the Poynting vector
becomes zero

T, = 6o Gjai =0, )

T,=-G.,G%+1g,, ﬁpG“‘P is the energy-momentum of the field tensor. It is

convenient to solve Egs. (1) and (2) together in the gauge: A5 =0, d,4 ¢ = 0; then
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eabe 4t 4e -, (12)

{ -.G° abe 4b e 1b
A; ~Gh,; +8e® 47 GE =0, (1b)
A¢ c‘.“,. =0 (22)

(the point above 4, denotes differentiation with respect to time and H;,=d,G,).
Using Eq. (1a), we can rewrite condition (2a) in the form

A7 (A2, - A7) = 0. (2b)
A sufficient condition for fulfillment of the relation (2b) is
a _ fa _ a _ 48 _
a) Ai’]. =0,b)4; =0, ¢ 4 i A i 0.

Let us analyze the case a) when the potential depends only on time in the selected
coordinate system [see Eq. (2)]:

A‘i' = A‘i’ (t).
Thus, Eq. (1b) has the form:
1 a 24a 4b4b 2 4a4b4b _ p.
A.i — g A]. AjA‘i +gAiA].A]. =0 3)
The general solution of Eq. (3) generally depends on 18 integration constants. Equa-

tion (la), however, represents a case in which three of these constants are equal to
zero, so that the solution of 4 {(¢) depends on 15 integration constants.

We want to obtain a solution of Eq. (3) in a nine-parameter form:

A% _ ..2!._ f(q) (t), @
g

L
where O¢ is a constant orthogonal matrix
b b
0;0; =8¢ @)
[Eq. (4) has no summation over a.]
For f“(t) we obtain from Eq. (3) the system
fle) s ple) ¢z —fa)?) <0, )

where f2=3>_, f@'. We are interested here in the particular solution of Eq. (5) when
fU=fP=fP=f e, f(t) satisfies the equation f(¢) + 2f3(t) =0.
The solution of this equation has the form

1/4 g /4
: 1
fre) *( [( > ple +t, )" V?-J’ (6)
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where cn(x;k ) is the elliptic cosine of the Jacobi argument x and of the module %, 1, is
the arbitrary time origin, and u* is Ty, in the coordinate system under consideration.
The five-parameter solution, which is given by Eqgs. (4), (4"), and (6), is periodic in time
with a period T'[(3/8¢%)"%]"* (4/u)"*K (1/v2), where K (x) is the total elliptic integral
of the first kind. The field intensities, which correspond to this solution, have the form

o¢ .
Ef = —L ¢, ™
g
be 0F Of
HE = epe®° sz' ®)

It can be seen from Egs. (7) and (8) that

; 2 cbe gpb c
H? =gl(f/f) €k € Ei E’. )
It can also be seen from Eqs. (4') and (7) that the O ¢ matrix is a polarization matrix of
the field intensities; the three £ vectors are mutually orthogonal in our coordinate
system and, as follows from Eq. (9), the H ¢ vectors are parallel to the E ¢ vectors.

3. It can easily be seen that the argument of the periodic solution of (6) as a result
of the Lorentz transformation x,, = a,,(v)x, becomes kx = k,x,, where k, = uy and

k; =pvyly = (1 —v?)"?, ie, k* = 42, so that u plays the role of the mass; hence we
are dealing with a massive nonlinear plane wave.

For the potential 4 ;,(x) we obtain:

a

0
A% (kx) =a¥ (v)—2f(k(x +x_) ), 0% =0, (10)
14 u £ o [}

The fields E¢ and H ¢ in Egs. (7) and (8) can be transformed analogously. Our solu-
tions differ from Coleman’s solutions'™ in that the Poynting vector in our case is not
equal to the energy density (k > = u?). The rejection of this condition leads (already at
the classical level) to the origination of the mass y in the nonlinear plane wave (10).

In conclusion, we note that the obtained nonlinear plane wave with the mass
produced due to its nonlinearity may prove to be a useful tool for quantization of the
nonlinear theory.
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