Concerning the existence of monopoles in gauge field theories

M. I. Monastyrskii and A. M. Perelomov

Institute of Theoretical and Experimental Physics (Submitted November 27, 1974)

ZhETF Pis. Red. 21, No. 1, 94-96 (January 5, 1974)

A simple topological criterion is presented for the existence of monopoles in gauge-invariant theories with arbitrary compact symmetry group G.

Recently t'Hooft^[1] and Polyakov^[2] have obtained static solutions of the classical SU(2) equations-gauge invariant field theories that describe monopoles.

The purpose of this article is to indicate a simple necessary condition for the existence of solutions of this type in gauge-invariant theories with arbitrary compact symmetry group¹⁾ G. Namely, this condition is that the second homotopic group of the factor-space G/H be nontrivial: $\pi_2(G/H) \neq 0$. Here H is a subgroup in G and depends on the choice of the boundary conditions (as $r \to \infty$) for the solution of interest to us.

Consider a system of interacting vector (Yang-Mills) fields $A^j_{\mu}(\mu=1,2,3,j=1,\ldots,n,n)$ is the dimensionality of G), which transform in accord with an adjoint representation of the group G and scalar (Higgs) fields $\phi_a(a=1,\ldots,N)$ transforming in accordance with an N-dimensional unitary irreducible²⁾ representation T(g).

The Lagrangian of this system is

$$L = -\frac{1}{4} F_{j,\mu\nu} F^{j,\mu\nu} - \frac{1}{2} (D_{\mu} \phi_{\alpha}) (D^{\mu} \phi^{\alpha}) - U(\phi), \qquad (1)$$

where

$$\begin{split} F^{j}_{\mu\nu} &= \partial_{\mu} A^{j}_{\nu} - \partial_{\nu} A^{j}_{\mu} + g C^{j}_{kl} A^{k}_{\mu} A^{l}_{\nu} , \\ D_{\mu} \phi_{a} &= \partial_{\mu} \phi_{a} + i g A^{j}_{\mu} (T_{j})^{b}_{a} \phi_{b} , \end{split} \tag{2}$$

 C_{kl}^{j} are the structure constants of the Lie algebra of the group G, and T_{j} are infinitesimal operators of the representation T(g). It is assumed that (a) the potential

 $U(\phi)$ is a *G*-invariant function of the fields ϕ_a , (b) the absolute minimum U_0 of the potential $U(\phi)$ is reached only at finite values $\phi_a = \chi_a \neq 0$.

The equations of motion for the fields ϕ_a and A^j_μ can be easily obtained by varying L with respect to ϕ_a and A^j_μ . For the vacuum solution (i.e., for the solution corresponding to the absolute minimum of the energy) we have $\phi_a(\mathbf{r}) \equiv \chi_a$ and $A^j_\mu(\mathbf{r}) \equiv 0$. We seek the solution describing the monopole in the class of time-independent functions $\phi_a(\mathbf{r})$ and $A^j_\mu(\mathbf{r})$ with the following asymptotic behavior as $r \to \infty$:

$$\phi_a(\mathbf{r}) \sim \hat{\phi}_a(\mathbf{n}), \qquad A^j_{\mu}(\mathbf{r}) \sim \frac{1}{r} A^j_{\mu}(\mathbf{n}), \quad \mathbf{r} = r\mathbf{n}, \quad \mathbf{n}^2 = 1,$$
 (3)

and we assume that the fields $\phi_a(\mathbf{n})$ depend significantly on $\mathbf{n}.^{3}$ We note that by virtue of the equations of motion the $\hat{A}^i_{\mu}(\mathbf{n})$ are fully determined by the functions $\hat{\phi}_a(\mathbf{n})$. Following, ¹²¹ we choose $\hat{\phi}_a(\mathbf{n})$ in the form

$$\hat{\phi}_{a}(\mathbf{n}) = \Omega_{a}^{b}(\mathbf{n}) \,\phi_{b}^{(a)}, \quad \Omega_{a}^{b}(\mathbf{n}) = T_{a}^{b}(g(\mathbf{n})), \tag{4}$$

where $\hat{\phi}^{(0)}$ is a fixed vector, such that $U(\hat{\phi}^{(0)}) = U_0$.

It is seen from (4) that the vectors $\hat{\phi}(n)$ belong to a definite orbit of the representation T(g), i. e., to a set of vectors of the type $T(g)\phi^{(0)}$, where g runs through the entire group G. It is known that this orbit can be regarded as the factor-space G/H, where H is a stationary subgroup of the vector $\hat{\phi}^{(0)}$, i.e., the set h such that $T(h)\hat{\phi}^{(0)} = \hat{\phi}^{(0)}$.

Thus, the boundary conditions postulated by the functions $\hat{\phi}_a(\mathbf{n})$ define the mapping of the two-dimensional

3. In the Weinberg model $G = SU(2) \times U(1)$ and H = U(1)We present the results of the calculations of $\pi_2(G/H)$ and is imbedded in G irregularly. In this case $\pi_2(G/H)$ in the cases of greatest interest: (a) singly-connected = 0 and there are no solutions of the monopole type. group: $\pi_2(G/H) = \pi_1(H)$, $\pi_1(G/H) = 0$; (b) $G = \widetilde{G}/C$, where \tilde{G} is a singly-connected group with a finite center; C is only to stable solutions with finite energy. To find a subgroup of the center of \tilde{G} : these solutions, additional investigations are needed.

by a single integer.

discussions.

Lett. 20, 194 (1974)].

 $\pi_{2}(G/H) = \pi_{2}(\widetilde{G}/H) = \pi_{1}(H), \quad \pi_{1}(G/H) = C.$

are characterized by a single integer.

following physical examples:

sphere $S^2 = \{n : n^2 = 1\}$ on the orbit G/H, $\hat{\phi}: S^2 \to G/H$.

into $\hat{\phi}$, will be called homotopic to $\hat{\phi}$. The set of

essary condition for the existence of monopoles.

The mapping $\hat{\phi}'$, which can be continuously deformed

classes of mappings that are homotopic to one another

gauge yields a mapping of $\hat{\phi}$ that is homotopic to $\hat{\phi}$, it

follows that nontriviality of the group $\pi_2(G/H)$ is a nec-

constitutes the group $\pi_2(G/H)$. Since a change to another

1. Let G = SU(2), $T(g) = T^{I}(g)$, with I the isotopic spin. (a) I is half-integer; the stationary group of any vector $\hat{\phi}^{(0)}$ consists of only one element. Consequently $\pi_1(H)=0$ and there are no solutions of the monopole type. (b) I is integer; for a vector $\hat{\phi}^{(0)}$ with zero isospin projection on the t_3 axos. H = U(1), $\pi_1(H) = Z$ (Z is the group of integers), and the possible solutions of the monopole type

2. Let
$$G = SU(3)$$
 and $T(g) = T^{(p,q)}$, where p and q are nonnegative integers. (a) for the representations $T^{(1,0)}$ of dimensionality 3, at any choice of the nonzero vector $\hat{\phi}^{(0)}$, we have $H = SU(2)$ and $\pi_1(H) = 0$, and there are no

solutions of the monopole type. (b) Let $T^{(1,1)}$ be the

associate representation dim $T^{(1,1)}=8$. The vector $\hat{\phi}^{(0)}$

4) All the topological concepts used in the text are contained in[4]. ¹G. t'Hooft, Nucl. Phys. B79, 276 (1974).

²A.M. Polyakov, ZhETF Pis. Red. 20, 430 (1974) [JETP

1) After completing the work, the authors learned that certain

3) Solutions of this type, but only for Yang-Mills Fields and G-

results in this direction were obtained by A.S. Shvarts.

2) The reducible representations of the G group are also of

interest. They can be treated by the same method.

SU(2), were considered earlier by Yang and Wu. [3]

takes in this case the form of a Hermitian 3×3 matrix,

and $\operatorname{Tr}\phi^{(0)}=0$. If all three eigenvalues of $\hat{\phi}^{(0)}$ are dif-

ferent, then $H = U(1) \times U(1)$ and $\pi_1(H) = Z + Z$. Solutions

=U(2) and $\pi_1(H)=Z$, i.e., these solutions are numbered

of this kind are numbered by two integers. On the

other hand, if the two eigenvalues coincide, then H

³T.T. Wu and C.N. Yang, Properties of Matter under Unusual Conditions, Wiley, N.Y. 1969, p. 349. ⁴D. Huismoller. Stratified Spaces (Russ. Transl.), Mir.

^{1970.}

We are grateful to A.I. Vainshtein, L.B. Okun', A.M. Polyakov, and A.S. Shvarts for useful

We note in conclusion that physical interest attaches