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We obtain a result £y,(0)=0 that eliminates the divergences in the derivation of a formula for the
Green’s function of a Bose system with a condensate at small momenta. A simple convergent
diagram expression is obtained for 1/c¢? (¢ is the speed of sound). The conditions for the

applicability of calculations using a small parameter is discussed.

Gavoret and Nozieres!! obtained a number of exact
relations for a Bose system with condensate, in the

limit of small momenta at T=0, and in particular
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However, they themselves call attention to a definite
shortcoming of their analysis, namely, the intermediate
steps contain expressions that diverge as p ~ 0, and
these expressions combine into quantities with micro-
scopic meaning only in the last stage. To avoid diver-
gences, they had to introduce into the spectrum an un-
physical gap A, which is assumed to tend to zero in the
final expression; the procedure of taking the limit as p
— 0 is in this case not justified until A vanishes, The
derivation of (1) in®! is unsatisfactory also in another
respect, in that it uses essentially the assumption = ,(0)
#0, which, as we shall show, is incorrect.

In this article we obtain as an exact result
2o 2(0) =0 2)

and propose for formulas (1) a derivation that takes (2)
into account and contains no divergences whatever in
the intermediate stages of the calculations, A simple
diagram expression is obtained in this case for 1/c?,
and its convergence results in a microscopic verifica-
tion of the inequality c# 0 (independent of the micro-
scopic requirement that the compressibility be finite),
We consider here also the conditions under which it is
permissible, for a Bose system with an arbitrary small
parameter «, to discard diagrams of higher orders in
a that diverge as p — 0,

We write down the exact equation for Z,.(p), separat-
ing the term that diverges in the approximations (Fig.
1; £(p) is irreducible relative to two particle lines).
Recognizing that G’(p)=- G(p)=G"(-p)=G(-p)(p = 0)
we find
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At p=0, the integrand in the term with y (Fig. 1) takes
at small ¢ the form
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, p=(p,e)~0.

so that we obtain for %,(0) an exact self-consistent
equation, the only finite solution of which is (2). The
Hugenholtz-Pines relation'?! thus takes the form p
= 211(0)-

We note that (2) does not mean ¢ =0, as might seem
from a comparison of relations (1) and (5) of®*!

C'=—é=2;2(0)/5(52—02p2+i5) (5)

‘since B=0, i.e., (5) contains an uncertainty, Indeed,

using the equations off!!
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(the direct derivatives correspond to the physical
changes of the parameters), i.e., with allowance for
(2) we have

9%, (0)/3¢= 1. (m

Substitution of (2) in (7) in the definition of B'*! yields
B=0,

To obtain the limiting form of the Green’s function
G’, G(p—0), with allowance for (2), it is important to
point out the character of the nonanalytic terms AZ,,
in the expansion of Z,,(p) near p=0, which are due to
the diagram with ¥(p,q) (Fig, 1). It is important that in
the lowest order in p the nonanalytic corrections to
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Zu(p) and T,(p) coincide, AT,,=AZ,=AZ(p). Rec-
ognizing that ¥(0,0)=0, we obtain AZ(*=¢]) ~p®1np,
AZ(?=e))~ple+e,)Inlex¢,) [for the “bare” vertex
y®(p,q), the contribution would be respectively ~1np
and ~p-Heze,)In(e£e,)]. Substituting the expansions

Z0p)=u+re+AZ(p) +ae+bp? +..

Eoz(p) = AX(p) + alzz + blp2 + ...

in the exact expressions for G’ and G in terms of Zum
[see (2), (7] and taking into account the fact that AZ(p)
> €2, p? as well as'!!
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we obtain (1), with

c? =n/m(ai:2 (8)

Since (an’/ano)u=— 1 according to (6) and (7), we have
dn/dp=(@n'/du),, and Eq. (8) agrees with (1). 1t is
remarkable that the static susceptibility F,,(e=0, p —0)
=dn/du coincides with the analogous characteristic of
the system of supercondensate particles at a fixed num-
ber of particles in the condensate.

The convergence of the skeleton diagrams for (»n'/
a1, (Fig. 2) as ¢ — 0 follows from the equality
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(see (1), (6), and (2)).

In conclusion, we examine why the result (2) is not
obtained approximately for models with a small param-
eter @, for example for a rarefied system in the ladder
approximation (Fig. 3a), As p —~ 0, many diagrams
made up of Bogolyubov or exact Green’s functions
diverge, starting with the simplest ones, and the most
rapidly diverging are diagrams with three-pronged
vertices, for example for Z,,(p)~1/p* (Fig. 3b). It
can be shown that the degree of divergence m is pro-
portional to a power of the small parameter ! ((/m~1),
so that a cancellation of the small parameter takes
place in a narrow range of momenta p,~ ot /"p, << p, (p,
is the characteristic momentum of the interaction). The
substitution I' — I'° in skeleton diagrams is permissible
if the resultant diagram converges (for example, F,,1),
but is not valid in the case of a divergence, even if one
takes some convergent sequence of diverging diagrams
(Zo2» F,,), meaning that the region p — p, remains es-
sential; it is necessary here to use the exact connection
with the quantities for which the diagrams with I ¢
converge (of the type F,, with F !*1),
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