Contribution to the theory of the spectrum of a Bose system with condensate at small momenta

A. A. Nepomnyashchii and Yu. A. Nepomnyashchii

Perm' State University (Submitted September 26, 1974) ZhETF Pis. Red. 21, No. 1, 3-6 (January 5, 1975)

We obtain a result $\Sigma_{02}(0)=0$ that eliminates the divergences in the derivation of a formula for the Green's function of a Bose system with a condensate at small momenta. A simple convergent diagram expression is obtained for $1/c^2$ (c is the speed of sound). The conditions for the applicability of calculations using a small parameter is discussed.

Gavoret and Nozieres^[1] obtained a number of exact relations for a Bose system with condensate, in the limit of small momenta at T=0, and in particular

$$G''(p) = -\hat{G}(p) = \frac{n_o m c^2}{n(\epsilon^2 - c^2 p^2 + i \delta)}, \qquad c^2 = \frac{n}{m} \frac{d\mu}{dn}, \quad p = (p, \epsilon) \to 0.$$
(1)

However, they themselves call attention to a definite shortcoming of their analysis, namely, the intermediate steps contain expressions that diverge as $p \to 0$, and these expressions combine into quantities with microscopic meaning only in the last stage. To avoid divergences, they had to introduce into the spectrum an unphysical gap Δ , which is assumed to tend to zero in the final expression; the procedure of taking the limit as $p \to 0$ is in this case not justified until Δ vanishes. The derivation of (1) in [1] is unsatisfactory also in another respect, in that it uses essentially the assumption $\Sigma_{02}(0) \neq 0$, which, as we shall show, is incorrect.

In this article we obtain as an exact result

$$\Sigma_{0,2}(0) = 0 \tag{2}$$

and propose for formulas (1) a derivation that takes (2) into account and contains no divergences whatever in the intermediate stages of the calculations. A simple diagram expression is obtained in this case for $1/c^2$, and its convergence results in a microscopic verification of the inequality $c \neq 0$ (independent of the microscopic requirement that the compressibility be finite). We consider here also the conditions under which it is permissible, for a Bose system with an arbitrary small parameter α , to discard diagrams of higher orders in α that diverge as $p \rightarrow 0$.

We write down the exact equation for $\Sigma_{ik}(p)$, separating the term that diverges in the approximations (Fig. 1; $\tilde{\Sigma}(p)$ is irreducible relative to two particle lines). Recognizing that $G'(p) = -\hat{G}(p) = G'(-p) = \hat{G}(-p)(p \to 0)$ we find

$$\gamma(0, 0) = \frac{1}{2} \left[\Gamma(0, 0, 0) - \Gamma_{1}(0, 0, 0) \right] = \frac{1}{n_{0}} \Sigma_{02}(0).$$
 (3)

At p=0, the integrand in the term with γ (Fig. 1) takes at small q the form

$$i \frac{n_0^2 m^2 c^4}{n^2 (\omega^2 - c^2 q^2 + i \delta)^2} \left[\frac{1}{n_0} \sum_{0 \geq 0} (0) + \widetilde{\gamma}(0, q) \right], \quad \widetilde{\gamma}(0, 0) = 0, \quad (4)$$

so that we obtain for $\Sigma_{02}(0)$ an exact self-consistent equation, the only finite solution of which is (2). The Hugenholtz-Pines relation^[2] thus takes the form $\mu = \Sigma_{11}(0)$.

We note that (2) does not mean c=0, as might seem from a comparison of relations (1) and (5) of ^[3]

$$G' = -\hat{G} = \sum_{n>0} (0) / B(\epsilon^2 - c^2 p^2 + i \delta)$$
 (5)

since B=0, i.e., (5) contains an uncertainty. Indeed, using the equations of [1]

$$\Sigma_{02}(0) = n_o \left(\frac{\partial^2 E}{\partial n_o^2} \right) \qquad \frac{\partial \Sigma_{11}(0)}{\partial \epsilon} = -\left(\frac{\partial n}{\partial n_o} \right)_{\mu}$$
 (6)

we obtain

$$-\frac{d}{d\mu} \left[\Sigma_{11}(0) - \Sigma_{02}(0) \right] = 1 = \frac{\partial^2 E'}{\partial n_0 \partial \mu} + \frac{\partial^2 E'}{\partial n_0^2} - \frac{d n_0}{d\mu} = \frac{\partial \Sigma_{11}(0)}{\partial \epsilon} + \frac{1}{n_0} \Sigma_{02}(0) \frac{d n_0}{d\mu}.$$

(the direct derivatives correspond to the physical changes of the parameters), i.e., with allowance for (2) we have

$$\partial \Sigma_{1,1}(0)/\partial \epsilon \approx 1.$$
 (7)

Substitution of (2) in (7) in the definition of $B^{[3]}$ yields B=0.

To obtain the limiting form of the Green's function G', $\hat{G}(p \to 0)$, with allowance for (2), it is important to point out the character of the nonanalytic terms $\Delta \Sigma_{ik}$ in the expansion of $\Sigma_{ik}(p)$ near p=0, which are due to the diagram with $\gamma(p,q)$ (Fig. 1). It is important that in the lowest order in p the nonanalytic corrections to

$$\Sigma(\rho) = \widetilde{\Sigma}(\rho) + \gamma(\rho,q) G(\rho+q)$$

$$= -\Box + G(q)$$

$$\frac{\rho_1}{\rho_3} = \Gamma(\rho_1, \rho_2, \rho_3) \qquad \frac{\rho_1}{\rho_3} = \Gamma_1(\rho_1, \rho_2, \rho_3)$$

FIG. 1.

FIG. 2.

 $\Sigma_{11}(p)$ and $\Sigma_{02}(p)$ coincide, $\Delta\Sigma_{11} = \Delta\Sigma_{02} \equiv \Delta\Sigma(p)$. Recognizing that $\gamma(0,0) = 0$, we obtain $\Delta\Sigma(\epsilon^2 = \epsilon_p^2) \sim p^2 \ln p$, $\Delta\Sigma(\epsilon^2 \approx \epsilon_p^2) \sim p(\epsilon \pm \epsilon_p) \ln(\epsilon \pm \epsilon_p)$ [for the "bare" vertex $\gamma^{(0)}(p,q)$, the contribution would be respectively $\sim \ln p$ and $\sim p^{-1}(\epsilon \pm \epsilon_p) \ln(\epsilon \pm \epsilon_p)$]. Substituting the expansions

$$\begin{split} & \Sigma_{11}(p) = \mu + \epsilon + \Delta \Sigma(p) + a \, \epsilon^2 + b \, p^2 + \dots \\ & \Sigma_{02}(p) = \Delta \Sigma(p) + a_1 \epsilon^2 + b_1 p^2 + \dots \end{split}$$

in the exact expressions for G' and \hat{G} in terms of $\Sigma_{ik}^{[3]}$ [see (2), (7)] and taking into account the fact that $\Delta\Sigma(p) \gg \epsilon^2$, p^2 as well as^[1]

$$a - a_1 = -\frac{1}{2n_0} \left(\frac{\partial n'}{\partial \mu} \right)_{n_0}, \quad b - b_1 = \frac{n'}{n_0} \frac{1}{2m},$$

we obtain (1), with

$$c^{2} = n/m \left(\frac{\partial n}{\partial \mu}\right)_{n_{o}} \tag{8}$$

Since $(\partial n'/\partial n_0)_{\mu} = -1$ according to (6) and (7), we have $dn/d\mu = (\partial n'/\partial \mu)_{n0}$ and Eq. (8) agrees with (1). It is remarkable that the static susceptibility $F_{44}(\epsilon=0,\ p\to 0) = dn/d\mu$ coincides with the analogous characteristic of the system of supercondensate particles at a fixed number of particles in the condensate.

The convergence of the skeleton diagrams for $(\partial n'/\partial \mu)_{n0}$ (Fig. 2) as $q \to 0$ follows from the equality

FIG. 3.

$$g_{1} - g_{2} - g_{3} + g_{4} = 2 \left\{ 1 - \frac{\partial}{\partial \mu} \left[\sum_{11}^{o} (0) - \sum_{02} (0) \right] \right\}$$
$$= \frac{2}{n_{0}} \sum_{02} (0) \frac{dn_{0}}{d\mu} = 0$$

(see (1), (6), and (2)).

In conclusion, we examine why the result (2) is not obtained approximately for models with a small parameter α , for example for a rarefied system in the ladder approximation (Fig. 3a). As $p \rightarrow 0$, many diagrams made up of Bogolyubov or exact Green's functions diverge, starting with the simplest ones, and the most rapidly diverging are diagrams with three-pronged vertices, for example for $\Sigma_{i,b}(p) \sim 1/p^{n-2}$ (Fig. 3b). It can be shown that the degree of divergence m is proportional to a power of the small parameter l $(l/m \sim 1)$. so that a cancellation of the small parameter takes place in a narrow range of momenta $p_1 \sim \alpha^{1/m} p_0 \ll p_0$ (p_0 is the characteristic momentum of the interaction). The substitution $\Gamma \to \Gamma^0$ in skeleton diagrams is permissible if the resultant diagram converges (for example, $F_{33}^{(4)}$), but is not valid in the case of a divergence, even if one takes some convergent sequence of diverging diagrams (Σ_{02}, F_{44}) , meaning that the region $p \rightarrow p_1$ remains essential; it is necessary here to use the exact connection with the quantities for which the diagrams with $\Gamma^{(0)}$ converge (of the type F_{44} with $F_{33}^{(4)}$).

¹J. Gavoret and P. Nozieres, Ann. of Phys. 28, 349 (1964). ²N. M. Hugenholtz and D. Pines, Phys. Rev. 116, 489 (1959). ³A. A. Abrikosov, L. P. Gor'kov, and I. E. Dzyaloshinskii, Metody Kvantovoi teorii polya v statisticheskoi fizike (Quantum Field Theoretical Methods in Statistical Physics), Moscow, 1962 [Pergamon, 1965].

⁴S-K. Ma, H. Gould, and V.K. Wong, Phys. Rev. A3, 1453 (1971).