A new singularity in the dispersion of impurity excitation

in superfluid helium
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It is shown that the impurity branch of the energy spectrum of the elementary excitations of He*-He*
solutions has an end point at which decay into a roton and an He® quasiparticle with small momentum

takes place. The parameters of this spectrum are obtained.

PACS numbers: 67.60.F, 67.20.C

The difference between the conclusions based on the
reduction of the experimental data on the velocity of
fourth sound, ! ion mobility, ‘3! and the density of the
normal component, 3! on the one hand, and the results
of direct measurements'%! of the parameters of the
boson branch in solutions of He® in superfluid He* on the
other hand, have increased the interest i the problem
of the elementary-excitation spectrum,!”8

The resultant situation calls, as will be shown sub-
sequently, for a review of the presently held opinions
concerning the spectrum of the impurity excitations.

This paper is devoted to a derivation of the dispersion
law of He® quasiparticles on the basis of the experi-
mental data on the density p, of the normal component
at temperatures at which the impurity quasiparticles
are subject to Boltzmann statistics.

To solve this problem we used the fact that, within
the framework of the quasiparticle model, the depen-
dence of the impurity part p,, of the normal component
on the temperature T is determined by the law govern-
ing the dispersion of the He® quasiparticles. The value
of p,, was determined from the formula'®
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where « and k, are respectively the total normal density
and the relative density due to thermal excitations. The
values of k were taken from'®, and «, was calculated

with allowance for the data on the roton parameters and
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FIG. 1. Temperature dependence of £: the points 4, A, O, O,
and e correspond to weight cancentrations 0. 005,111 0,010, 1%
0.85, 0.156, and 0.256. 3! The solid curve was plotted using
(3).
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the smearing of the energy gap,'®' which are given
infe-ol,

It is important that «; tends at low temperatures to a
constant value Ki(O), and an increase of T leads to a
noticeable growth of the impurity part of the normal
density. Figure 1 shows a plot of £(T), where

£ Ik (T) =k, (O)]x~Y, (2)

and x is the weight concentration. It follows from the
plot that the values of ¢ for solutions with different con-
centrations agree within the limits of errors (the errors
being 0.1, 0.06, and 0.04 for x=0.085, 0.156, and
0.256, respectively).

This fact allows us to conclude that the interaction
between the He® impurities does not influence the tem-
perature dependence of p,,, which is connected with
the type of dispersion law. In addition, at large values
of the momentum, the parameters of the impurity-
excitation spectra, like the parameters of rotons in
solutions, 4=8) are practically independent of the
concentration.

On the basis of the foregoing considerations, we can
attempt to reconstruct the energy spectrum of the He?
quasiparticles, It is necessary here, however, to start
from some specified function ¢(p) with unknown param-
eters and then, using the values of p (T), to determine
these parameters.

The first attempt of this type was connected with an
idea advanced recently by L.P. Pitaeveskil (see!®).

It appears, however, that a more general approach is
the one based on representing the energy ¢ in the form

e=p¥m*(1+ Squp?ty, (3)

where p and m* are respectively the momentum and the
effective mass of the quasiparticle.

To determine &, and @, we used the p, data at T
<0.06 K given in!®!, At these low temperatures it is
possible to expand «, in powers of @, and @,. A least-
squares reduction of the data has shown that «, is
negligibly small and ¢, =—-0.04 A%,

The next coefficient, ¢,, is obtained from the condi-
tion that the quantity

2
»
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be a minimum, where » is the Boltzmann function and
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FIG. 2. Energy spectrum of elementary excitations.

the summation is carried out over the experimental
points'®! corresponding to the temperature region 0.7—
1.4 K.

The e(p) curve obtained in this manner might cross
the boson branch. However, as shown by L.P.
Pitaevskil, (12! the spectrum should have in this case an
end point connected with the decay of the excitation.
Using the results of!!?! it can be shown that in this case
the decay is accompanied by production of a roton and an
He® quasiparticle with small momentum parallel to the
roton momentum.

Since the conservation laws impose a connection be-
tween the energy €, and the momentum p, at the end point
of the spectrum, and the velocities of the decaying and
produced excitations are equal, *? it becomes possible,
with only one varied parameter p,, to retain the coeffi-
cients o, and a, in (3). The sought value of p, corre-
sponds to the minimum of & (t=p, in this case). The
calculations yielded p,=2.11+0.05 A,

The e(p) dependence obtained in this manner is shown
in Fig. 2 (curve 1). For comparison, the figure shows
the dispersion of the thermal excitations (curve 2), as
well as curve 3, the crossing of which should produce
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an end point of the impurity branch. If p, does not differ
strongly from the characteristic roton momentum p,,
then curve 3 is described by the equation

e =As(p. ~py)2/2n* +p), (5)
where A and p are the roton parameters.

It should be noted that the present result supports to
a certain degree Pitaevskil’s hypothesis (see'®!), in
which the essential factor is apparently not the minimum
on the e(p) curve but the high density of states at large
momenta. In addition, the analysis presented here does
not exclude the possible existence of a shallow minimum
on curve 1 in the region of the roton momentum p;, but
further research is necessary for a final answer to the
question of the minimum.

I take the opportunity to thank L.P. Pitaevskil for
useful discussions of the work.
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