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We investigate the periodic domain structure of vacuum and the particle spectrum when discrete symmetry

is spontaneously broken.

PACS numbers: 11.10.E, 11.10.Q

Inhomogeneous energy-minimizing solutions for
vacuum have been considered recently in a number of
field-theory models with spontaneously broken sym-
metry. 2! It is shown in!!! that for a scalar (pseudo-
scalar) field ¢ with Lagrangian
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it is possible to have, besides the homogeneous vacuum

state ¢, =+ 0, also an inhomogeneous stationary solution

¢, = otanh(px/V'2) (where p?=4Co?) corresponding to a

local energy minimum. Interest in models of this kind

is due to the fact that the Lagrangian (1) can be used,

in particular, to describe spontaneous CP-violation of

vacuum, 131!

The formation of a domain wall is attributed inf!! to
the fact that the anomalous vacuum mean value ¢, in
causally-unconnected regions of the universe is inde-
pendent of the sign in the phase transition to an ordered
state (with ¢#0). The dimension of the domain is esti-
mated on the basis of the same considerations.

We note in this connection that the equation of motion
corresponding to the Lagrangian (1) admits of stationary
solutions

¢, =a(.1.3+"_;;.}“s..1a; k) (2)

(@ = uQ@ +2)12x, b is the modulus of the elliptic func-
tion, 0<k%<1), which describes a periodic domain
structure of vacuum with a period

D = 2K(k)p—M(1 +k2)1/2, (3)

where K (k) is a complete elliptic integral of the first
kind. In the limiting case k=1, ¢, goes over into ¢,.

The absolute minimum of the energy is always reached
in homogeneous vacuum ¢2=0c?. Nevertheless, during
the course of a relativistic phase transition!*! the phase
trajectory of the thermodynamic system of the field ¢
can pass near one of the states (2), which correspond,
at k close to unity, to a local energy minimum. The
only way out of this state is via fluctuations. We show
below that without allowance for the fluctuations the
lifetime of a periodic domain structure with D> p-! can
be cosmologically large.

The presence of a periodic domain structure of
vacuum leads to nontrivial consequences for the spec-
trum of the observable particles.

Small deviations ¢ from the vacuum solution ¢, satisfy
the Lame equation in the Jacobi form!5!
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where E is the energy of the ¢-field quanta and ¢, is
the momentum of the particle in the plane of the domain
walls. Equation (4) is the Schrédinger equation with a
nonperiodic potential. Its solutions are the Bloch
functions
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where H(o) and 6(a) are the Jacobi eta and theta func-
tions; @, and @, are parameters that are functions of E
and ¢ (see's!),

The band structure of the spectrum E(g) is deter-
mined by transcendental parametric equations in elliptic
functions. The particle dispersion law is illustrated in

Fig. 1. Here
3
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As seen from Fig. 1, in a vacuum with a periodic do-
main structure there can exist three types of particles.
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FIG. 1.
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FIG, 2.

At g, =27/D the E(g) curve experiences a discontinuity
corresponding to the region of forbidden energies.
There are no energy discontinuities on going to higher
Brillouin zones.

The particles described by the upper branch of the
spectrum have a relativistic dispersion in the region of
large momenta (gD >1).

The presence of an excitation branch with E? <0 cor-
responds to instability of the periodic domain structure
for long-wave perturbations (¢,D <w). At D> p~! the
decay time 7=1¢,! ! of the periodic domain structure is
given by

F Ve w T exp )
2

ik
Since the characteristic mass p cannot be much smaller
than several GeV,"! domain structures with D> 10! ¢m
can be regarded as relatively stable, since the time 7

is cosmologically large in this case. Of course, the

true lifetime of the periodic domain structure can be
much smaller, owing to its fluctuating transition into the
homogeneous state ¢,.

In the limiting case of one domain wall (=1, D =),
the particle spectrum is shown in Fig. 2. The ordinates
represent the limiting values of the masses (these val-
ues were obtained in'?!), The particle dispersion laws
are then
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where
! q <<
-5 s
s=]2" M (12)
1, 9 S>> .

The value of the mass m,(I) coincides with the mass of
the excitations over a homogeneous vacuum ¢, .

The appearance of a massless branch of the oscilla-
tions (9) propagating along the domain wall is due to
spontaneous violation of the translational invariance of
the vacuum.

We note in conclusion that the onset of an inhomo-
geneous periodic structure of vacuum, corresponding
to an absolute minimum of the energy, is possible when
a complex field interacts with gauge fields. This situa-
tion, which takes place in type-II superconductors, ¢! is
presently under investigation by us using concrete
gauge-invariant models of weak and electromagnetic
interaction.
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