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Physical states (PS) of a vertex, the connections of
which with arbitrary other states are anomalously small
if their mass is large enough, were observed in the
dual spectrum. Such PS should therefore have small
partial and total widths in comparison with the usual
ones. We shall henceforth call these quasistable (QS)
states.

In the generalized Veneziano model under the condi-
tion ¢(0)=1, quasistable states are first observed on
the second daughter trajectory (DT). "' We shall seek
a state of this type in the range ¢'M?>J>1, where J
is the spin of the state. It is easily seen that the physi-
cal states that are quasistable are those which coincide,
in the principal order in o, with the spurion states,
ive., |Fg)=18)+(1/M)|®), where |F,,) is a quasista-
ble state, |S) is a spurion state, and |®) is a certain
Fock state with (®|®) ~1. We take all the physical
states (including the quasistable states) to be
orthonormal.

The spurion states |S) are orthogonal to the physical
states: 1S, (g =L;(-¢q)®,,), where q is the momen-
tum of the state and L, are Virasoro generators. '*! The
complete set of independent spurion states |S,) was
constructed in the paper by Brower and Thorn. !

We can propose a method for explicitly constructing
the quasistable states. We construct physical states
satisfying the conditions
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and coinciding in principal order in M (or ¢) with the
suprion states. Starting with the fifth daughter trajec-
tory, the conditions (1) and (2) turn out to be inter-
dependent. Satisfying the conditions (1)—(3), we obtain
the quasistable states | F_,) on the second DT:
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where &,, =a,, —{a,q)g,/q% and (f,| is a physical state
on the principal trajectory. As usual, any physical
state is defined accurate to the spurion state | 5% with
zero norm. The coefficient A is obtained from the con-
dition (3). From the construction of the state (4) we see
that in the critical dimensionality (D,.=26 for the given
model) the quasistable states are transformed into
spurion states with zero norm {f,| L,={f, (L,
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+3L%/2). ¥ This quasistable state is the only one on
the second DT.

Examining the construction of quasistable states on
the third DT, we see that constructing the scheme be-
comes somewhat more complicated. In the case of
the second DT, the state | f,,) was an eigenfunction of
the operator a®L3(—g). On the third DT we take as the
increment to the spurion state (f,14%, and the following
conditions are satisfied: (f,| Li(-q)=(f,IL;(-¢)=0 and
{fi]L,=—1. We can see that (f,| is no longer an eigen-
function of the operator a:L;(~-g¢). Therefore, in order
to satisfy the condition (2), it is necessary to use two
independent spurion states {f,}L; and {f,| L;, for which
the condition (1) is satisfied:
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Then, taking into account the commutation of the
operators - and L; (- ¢), we can obtain a physical state
that coincides with the spurion state in the principal
order in a'g®>1:
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Satisfying the condition (3), we obtain the quasistable
state (F | =(F.,| +¥3..1; 89", where S\’ =(f,;| L,(q)
and (f,,;! is the physical state of the second DT off the
mass shell. It follows from the explicit form of (6) that
at D =26 we obtain a spurion state with zero norm from

the initial quasistable state.

On the fourth DT, to satisfy the condition (2) it is
necessary to use six independent spurion states (f,;!L;,
{fiIL}, and (f,|L]; where i=1, 2, 3 and j=1, 2, since
the state (f,;1d% L;(-q) of the second DT contains six
possible Fock states.

We next satisiy the condition (3) and construct three
quasistable states orthogonal to one another. It is easily
understood that the coefficients of the increments vanish
at D=26. Indeed, the coefficient of (f,/|d? is chosen
from the condition that the coefficients », be equal to
zZero:
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However, when the states (f,;| L; are acted upon by the
operator L; we obtain the factor (D -26), which deter~
mines the vanishing of the coefficient 8 at a dimension-
ality D,.=26. To determine the coefficients in the other
terms of the expression
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we use a system of equations whose inhomogeneous
terms are proportional to (D —26). Therefore all the
coefficients B, y, and 6, vanish at D =26.

For the construction of the quasistable states on the
fifth DT we have one condition of the type (1), which
coincides with a condition of the type (2). Therefore 12
spurion states satisfying the condition (1) are sufficient
on the fifth DT. In the physical case D=4, there exist
on the fifth DT five quasistable states. On the sixth DT
there will be already 11 such states. We note that we
are considering only states with positive internal parity.
It is easily seen that the number of the spurion states
satisfying the condition (1) is sufficient for the construc-
tion of the QS on any DT, and the spin of the state is
J>1. Indeed, the number of spurion states satisfying
the condition (1) is equal to Ng(k) ~ Ng(k ~1), where
Ng(k) is the number of the spurion states on the kth DT.
The number of independent conditions of type (2) is
also Ng(k) = Ng(k ~1), i.e., it coincides exactly with
the number of the possible combinations of the spurion
states (fIL,. Therefore the number of quasistable
states on the kth DT is equal to the number of physical
states on the (k—2)nd DT, Ny ,=Ngp, ,=Nep_,, ., and
the asymptotic estimate for the number of Fock states
at large values of the mass of the pole takes the form

Nopy~ Ct~Bexp@iDar), (8)

where a =(7*/16)B=(D +2)/4. We see that the number
of quasistable staies coincides with the number of the
type (f(k -2)IL}. At D=26, the spurion states (f,,| L,
become spurion states with zero norm, and therefore
drop out of the spectrum together with their conjugate
states (f2'| Li(~q), in analogy with the states (f,,|L,
and (f{°2’| L{™. Our quasistable states are transformed
at D =26 into the spurion states {f,.,| L;, and therefore
drop out of the dual amplitude not asymptotically but

exactly. Thus, quasistability is a manifestation of
spurion states with zero norm in the case of lower
dimensionalities D <26. From a direct calculation of
the quasistable states on the second, third™! and fourth
DT we can assume that there exist no other construc-
tions of quasistable states at large masses. However,
we can construct physical states under the conditions
J~1 and a’¢q*>> 1, which are quasistable with respect to
the number of trajectory 2> 1. For example, (F|

~[(D ~26)/( +))(01(al; - a2/ * 2 (a%y + ) +3 ,a (S,
for the kth DT at D> 6, where g, and ¢ are constants.
These states do not exist at the physical dimensionality
D=4,

It is of interest to :{ttempt to observe experimentally
heavy quasistable states. Such a possibility is consid-
ered, e.g., in'®!, Worthy of special attention in this
connection is the experimental observation, in e'e”
annihilation, of anomalously narrow resonances with
relatively large masses, MZ~10 GeV® and M2 ~13.7
GeV?. The experimental observation of quasistable
resonances is important for the separation of dual
models with optimal D, for if quasistable states do not
exist, then the critical dimensionality of the model
required is D =4. On the other hand, if they do exist,
then it is possible to use models with D, >4 as approxi-
mations to the physical models.

The authors thank V.A. Franke for stimulating
discussions.

1v. A. Kudryavtsev and E, M. Levin, ZhETF Pis. Red. 13,
507 (1971) [JETP Lett. 13, 360 (1971),

M. A. Virasoro, Phys. Rev. D1, 2933 (1970).

*R. C. Brower and C.B. Thorn, Nucl. Phys, B31, 163 (1971),
‘P. Goddard and C.B. Thorn, Phys. Lett. 40B, 235 (1972).
’B. Pontecorvo, Yad. Fiz. 11, 846 (1970) [Sov. J. Nucl,
Phys. 11, 473 (1970)].



