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A procedure is proposed for constructing theories of asymptotically free massive particles. The general

scheme is illustrated with a concrete example.

1. In this article we propose a procedure for the
construction of asymptotically free theories with
massive particles, which consist in the following. We
first choose the Lagrangian L describing the interaction
of gauge, spinor, and scalar fields, which has an addi-
tional symmetry (on top of gauge symmetry) which leads
to asymptotic freedom. Specifically, we consider a
Lagrangian'!! having gauge symmetry and supersymme -
try. '*! The additional symmetry can lead to the impossi-
bility of the Higgs mechanism (in the Lagrangian chosen
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by us, all the particles are massless). The next step is
to add to L mass terms that are compatible with gauge
symmetry, but which violate the additional symmetry.
The mass terms for the scalar field must be chosen in
such a way that spontaneous breaking of gauge symme-
try takes place, so that all the particles become
massive. The asymptotic freedom is then preserved in
the theory. This fact follows from the statement that
all the renormalization constants do not depend on the
dimensional parameters of the Lagrangian. This state-
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ment is formulated more accurately in the next section.
In Sec. 3 we describe in greater detail a model illus-
trating the proposed procedure.

2. We consider a renormalizable-theory Lagrangian
in the general form

L=S(TWemir® 4+ m, T3 g, TH),

(1)

where the vertices are classified by dimensionality:
I'» are kinetic terms of the type 3, ¢5* ¢ and y»*9, 9,
I'{*’ are mass terms of boson fields, I'{*’ are mass
terms of fermion fields and vertices of the type ¢° and
$d¢, while I'}* are vertices with dimensionless cou-
pling constants of the type ¢*, yy¢, and ¢*3¢. The fol-
lowing statement holds true: it is possible to find func-
tions Z; (g, A/)) that depend only on the dimensionless
parameters, and also on the ratio of the cutoff parame-
ter A to a certain mass parameter x {normalization
point), so that the theory described by the
(renormalized) Lagrangian
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is finite. The parameters M,, m,, g;, and A in (2) are
assumed to be finite, We note that the physical masses
do not coincide with M; or m,, but are finite functions
of these parameters. The proof of this statement®’ is
presented with the aid of a generalization of the scheme
of a proof proposed by Weinberg, '*! of an analogous
statement for theories without scalar particles (but
without resorting to the massless theory).

(4)p(4)
+gin'f l‘j ],

3. We consider a theory illustrating the general
scheme described in Sec. 1. The Lagrangian is given by

(3)

L, describes asymptotically free supersymmetry and
SU{(2) gauge-invariant theory!! in a special gauge:

L=Lg L.
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A%, 4%, é,, and A, are triplets of the gauge, spinor,
scalar, and pseudoscalar fields, the gauge is 9*A¢=0,
and C° is a triplet of fictitious Fermi scalars.

The mass terms are chosen in the form

- bogag, boam
Ly=- My~ ™ A+ e’

(6)
L, preserves the gauge invariance, but violates the
supersymmetry. According to Sec. 2, the theories (3)
and (4) have the identical divergences of the vertices
and wave functions, so that the theory (3) is (multiplica-
tively) renormalizable and asymptotically free, just as
theory (4). We note that the theory (3) has the same
form as the usual Yang-Mills theory in the gauge

3“14‘:‘ =0.

181 JETP Lett,, Vol. 21, No. 6, March 20, 1975

The incorrect sign in front of $2 in (6) enables us to
realize the spontaneous breaking of the symmetry. We
introduce a new field ¢,:

<0]g,|0>=0, )

and substitute this expression in the Lagrangian. We
write out the terms of interest to us:
BB, ¢ WP ES, (8)
2 pra a 2 1
The remaining terms either do not contain the field ¢,
or are more than quadratic in the fields. The field A},
remains massless (photon), while the fields A%® acquire
a bare mass M,=g&, which is chosen as the indepen-
dent parameter in place of u?, The parameter u? should
be chosen from the condition {01 ¢,10)=0. Let us con-
sider this condition in the zeroth approximation in g.
From (8) we obtain

2
pre=ty -0, (9)

g “le=0
from which (under the condition £#0) it follows that u?
takes the form

u?=gla, (10)
and the term linear in ¢, takes the form
gaM ¢, (11)

It is now perfectly clear that in each order of perturba-
tion theory it is possible to satisfy the condition
{01 ¢,10) by a corresponding (unique) choice of a.

It is necessary next to verify the stability of the
theory, i.e., to establish the sign of the square of the
mass in the field ¢, (the fields ¢, , are unphysical, and
the mass in the remaining fields is normal). Calculation
in second order in g yields (with allowance for the ex-
pression obtained for a from the condition (0| ¢,/ 0) =0
in first order in g):

4g? [ 2m-u,)° 2M+ M) M2
M(0) = -~ fd% (AR S S, SN
@md {2 M= MNP (PR H)HE (T M)
Mk 4 1
37 v (12)
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where the integral is Euclidean, and II is defined by
g% =q2-¢q* (13)

It is seen that I1(0) is finite (as expected on the basis of
(Sec. 2). In addition, there exists a region of values
of the parameters (e.g., M,> M, m®>12 M?), when
1(0) is positive. We note that q is negative in this case.

isd,l(q))" ==i(g? =Yg,

Thus, by choosing the parameters M,, m, and M we
can ensure a normal mass of the field ¢,, i.e., stabili-
ty of the theory. We note that at M =0 the theory is
always stable, and one of the fermions has zero mass
(neutrino).

If the theory (3) is regarded only as a gauge theory,
then we can change over to the gauge ¢, = ¢, =0 (with
corresponding modification of the additional vertices).
In this gauge, the effective potential in the approxima-
tion in g2 (with allowance for the radiative corrections),
is equal to (=2, 3):
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where 0m? and 6m3 are radiative corrections propor-
tional to g2 to the masses of the A, fields. It is easy
to verify that at I1(0) >0 the potential (13) has a unique
minimum at the point ¢, =A,=0.

The authors are grateful to E. S. Fradkin for useful
discussions.

DThis statement was also proved by another method by Collins
and Macfarlane, [4]
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